4 resultados para American Bar Association.
Resumo:
[ES]La fibrilación ventricular (VF) es el primer ritmo registrado en el 40\,\% de las muertes súbitas por paro cardiorrespiratorio extrahospitalario (PCRE). El único tratamiento eficaz para la FV es la desfibrilación mediante una descarga eléctrica. Fuera del hospital, la descarga se administra mediante un desfibrilador externo automático (DEA), que previamente analiza el electrocardiograma (ECG) del paciente y comprueba si presenta un ritmo desfibrilable. La supervivencia en un caso de PCRE depende fundamentalmente de dos factores: la desfibrilación temprana y la resucitación cardiopulmonar (RCP) temprana, que prolonga la FV y por lo tanto la oportunidad de desfibrilación. Para un correcto análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que, debido a las compresiones torácicas, la RCP introduce artefactos en el ECG. Desafortunadamente, la interrupción de la RCP afecta negativamente al éxito en la desfibrilación. En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años. Los DEA, que originalmente se diseñaron para pacientes adultos, deben discriminar de forma precisa las arritmias pediátricas para que su uso en niños sea seguro. Varios DEAs se han adaptado para uso pediátrico, bien demostrando la precisión de los algoritmos para adultos con arritmias pediátricas, o bien mediante algoritmos específicos para arritmias pediátricas. Esta tesis presenta un nuevo algoritmo DEA diseñado conjuntamente para pacientes adultos y pediátricos. El algoritmo se ha probado exhaustivamente en bases de datos acordes a los requisitos de la American Heart Association (AHA), y en registros de resucitación con y sin artefacto RCP. El trabajo comenzó con una larga fase experimental en la que se recopilaron y clasificaron retrospectivamente un total de 1090 ritmos pediátricos. Además, se revisó una base de arritmias de adultos y se añadieron 928 nuevos ritmos de adultos. La base de datos final contiene 2782 registros, 1270 se usaron para diseñar el algoritmo y 1512 para validarlo. A continuación, se diseñó un nuevo algoritmo DEA compuesto de cuatro subalgoritmos. Estos subalgoritmos están basados en un conjunto de nuevos parámetros para la detección de arritmias, calculados en diversos dominios de la señal, como el tiempo, la frecuencia, la pendiente o la función de autocorrelación. El algoritmo cumple las exigencias de la AHA para la detección de ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos como en pediátricos. El trabajo concluyó con el análisis del comportamiento del algoritmo con episodios reales de resucitación. En los ritmos que no contenían artefacto RCP se cumplieron las exigencias de la AHA. Posteriormente, se estudió la precisión del algoritmo durante las compresiones torácicas, antes y después de filtrar el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo método desarrollado a lo largo de la tesis. Los ritmos desfibrilables se detectaron de forma precisa tras el filtrado, los no-desfibrilables sin embargo no.
Resumo:
Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years, research has been focused on designing methods for analysis of ECG during chest compressions. Most approaches are based either on adaptive filters to remove the CPR artifact or on robust algorithms which directly diagnose the corrupted ECG. In general, all the methods report low specificity values when tested on short ECG segments, but how to evaluate the real impact on CPR delivery of continuous rhythm analysis during CPR is still unknown. Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a thorough review of the field as the starting point for these late developments and to underline the open questions and future lines of research to be explored in the following years.
Resumo:
Quality of cardiopulmonary resuscitation (CPR) improves through the use of CPR feedback devices. Most feedback devices integrate the acceleration twice to estimate compression depth. However, they use additional sensors or processing techniques to compensate for large displacement drifts caused by integration. This study introduces an accelerometer-based method that avoids integration by using spectral techniques on short duration acceleration intervals. We used a manikin placed on a hard surface, a sternal triaxial accelerometer, and a photoelectric distance sensor (gold standard). Twenty volunteers provided 60 s of continuous compressions to test various rates (80-140 min(-1)), depths (3-5 cm), and accelerometer misalignment conditions. A total of 320 records with 35312 compressions were analysed. The global root-mean-square errors in rate and depth were below 1.5 min(-1) and 2 mm for analysis intervals between 2 and 5 s. For 3 s analysis intervals the 95% levels of agreement between the method and the gold standard were within -1.64-1.67 min(-1) and -1.69-1.72 mm, respectively. Accurate feedback on chest compression rate and depth is feasible applying spectral techniques to the acceleration. The method avoids additional techniques to compensate for the integration displacement drift, improving accuracy, and simplifying current accelerometer-based devices.
Resumo:
nterruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.