2 resultados para Algoritmo EM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los supuestos fundamentales de la Teoría de la Computabilidad se establecieron antes de la aparición de los primeros ordenadores (a finales de los años 40), supuestos que muchos años de vertiginoso cambio no han conseguido alterar. Alan Mathison Turing demostró ya entonces que ningún ordenador, por muy potente que lo imaginemos, podría resolver algunas cuestiones. Estos problemas para los que no existe ningún algoritmo posible, los incomputables, no son excepcionales y hay un gran número de ellos entre los problemas que se plantean en torno al comportamiento de los programas. El problema de parada, es sin duda el miembro más conocido de esta familia: no existe un algoritmo para decidir con carácter general si un programa ciclará o no al recibir unos datos de entrada concretos. Para demostrar la incomputabilidad de un problema necesitamos un argumento lógico que certifique la inexistencia de algoritmo, o lo que es lo mismo, que pruebe que ninguno de los algoritmos existentes es capaz de resolver dicho problema. Tal argumento de carácter universal no suele ser sencillo de establecer, y normalmente suele estar relacionado con una demostración por reducción al absurdo. Existen distintas técnicas para lograr este objetivo. La técnica de diagonalización es la más básica de ellas, y resulta bastante conocida al no tratarse de una herramienta específica de la Informática Teórica. En este documento no se trata de explicar la técnica en sí, que se supone conocida, sino de ilustrarla con una colección de ejemplos de diferente grado de dificultad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Konputagarritasunaren Teoriaren oinarriak lehenengo ordenadoreak azaldu aurretik (40. hamarkadaren bukaera aldera) ezarri ziren, eta ziztu biziko eta etenik gabeko eraldaketek aldatzea lortu ez duten oinarriak dira. Alan Mathison Turing-ek jadanik garai hartan frogatu zuen, ahalik eta potentzia handienekoa imajinatuta ere, inolako ordenadorek ebatzi ezingo zituen zenbait gai edo arazo bazeudela. Balizko algoritmorik ez duten problema horiek, konputaezinak deitzen ditugunak, ez dira salbuespenak eta adibide ugari aurki dezakegu. Programen portaeraren inguruan planteatzen diren problemen artean, asko konputaezinak dira. Familia horretako kide ezagunena, zalantzarik gabe, geratze problema da: sarrerako datu zehatz batzuk hartzerakoan, programa bat begizta infinituan geratuko ote den era orokorrean erabakitzeko algoritmorik ez dago. Problema baten konputaezintasuna frogatzeko, hau ebatziko duen algoritmo zehatz bat existitzen ez dela ziurtatuko duen argumentu logikoa behar dugu, edo beste era batera esanda, existitzen diren algoritmoak problema hori ebazteko gai izango ez direla egiaztatuko duen argumentua. Izaera unibertsaleko argumentu hori ezartzea ez da batere erraza izaten, eta normalean, absurduraino eramandako frogapen batekin erlazionatuta egon ohi da. Helburu hori lortzeko zenbait teknika daude. Diagonalizazioaren teknika horien artean oinarrizkoena da, eta nahiko ezaguna, ez baita Informatika Teorikoaren tresna espezifikoa. Dokumentu honen helburua ez da teknika bera azaldu edo deskribatzea, ezaguntzat hartzen baita, zailtasun maila desberdineko hainbat adibideren bitartez argitzea baizik.