4 resultados para Al-27 NMR spectroscopy
Resumo:
Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using N-15-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.
Resumo:
Presentación de la la comunicación a la VII Reunión Microbiología del Medio Acuático celebradad en Bilbao del 25 al 27 de septiembre de 2008
Resumo:
232 p.
Resumo:
Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).