5 resultados para Adenosine Triphosphatases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamentally, action potentials in the squid axon are consequence of the entrance of sodium ions during the depolarization of the rising phase of the spike mediated by the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect metabolic efficiency with a minimum charge needed for the change in voltage during the action potential would confine sodium entry to the rising phase and potassium efflux to the falling phase. However, because sodium channels remain open to a significant extent during the falling phase, a certain overlap of inward and outward currents is observed. In this work we investigate the impact of ion overlap on the number of the adenosine triphosphate (ATP) molecules and energy cost required per action potential as a function of the temperature in a Hodgkin–Huxley model. Based on a recent approach to computing the energy cost of neuronal action potential generation not based on ion counting, we show that increased firing frequencies induced by higher temperatures imply more efficient use of sodium entry, and then a decrease in the metabolic energy cost required to restore the concentration gradients after an action potential. Also, we determine values of sodium conductance at which the hydrolysis efficiency presents a clear minimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]The generation of spikes by neurons is energetically a costly process and the evaluation of the metabolic energy required to maintain the signaling activity of neurons a challenge of practical interest. Neuron models are frequently used to represent the dynamics of real neurons but hardly ever to evaluate the electrochemical energy required to maintain that dynamics. This paper discusses the interpretation of a Hodgkin-Huxley circuit as an energy model for real biological neurons and uses it to evaluate the consumption of metabolic energy in the transmission of information between neurons coupled by electrical synapses, i.e., gap junctions. We show that for a single postsynaptic neuron maximum energy efficiency, measured in bits of mutual information per molecule of adenosine triphosphate (ATP) consumed, requires maximum energy consumption. For groups of parallel postsynaptic neurons we determine values of the synaptic conductance at which the energy efficiency of the transmission presents clear maxima at relatively very low values of metabolic energy consumption. Contrary to what could be expected, the best performance occurs at a low energy cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: 5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods: Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results: MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A(2A) adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion: MTA may potentially offer therapeutic neuroprotection.