3 resultados para Absolute, The.
Resumo:
The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.
Resumo:
[EN] The objective of this study was to determine whether a short training program, using real foods, would decreased their portion-size estimation errors after training. 90 student volunteers (20.18±0.44 y old) of the University of the Basque Country (Spain) were trained in observational techniques and tested in food-weight estimation during and after a 3-hour training period. The program included 57 commonly consumed foods that represent a variety of forms (125 different shapes). Estimates of food weight were compared with actual weights. Effectiveness of training was determined by examining change in the absolute percentage error for all observers and over all foods over time. Data were analyzed using SPSS vs. 13.0. The portion-size errors decreased after training for most of the foods. Additionally, the accuracy of their estimates clearly varies by food group and forms. Amorphous was the food type estimated least accurately both before and after training. Our findings suggest that future dietitians can be trained to estimate quantities by direct observation across a wide range of foods. However this training may have been too brief for participants to fully assimilate the application.
Resumo:
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 mu m). In the case of surface finish, the absolute error is well below R-a 1 mu m (average value 0.32 mu m). The present approach can be easily generalized to other grinding operations.