6 resultados para ALDEHYDES
Resumo:
396 : il., graf.
Resumo:
During the research that it is summarized in the present memory, the activation of enals via iminium ion catalysis in different transformations has been studied. Firstly, a 1,3-dipolar cycloaddition between stable azomethine ylides and a,b-unsaturated aldehydes catalyzed by a chiral imidazolidinone derivative has been optimized. Employing this methodology we have synthesized a large range of densely substituted pyrroloisoquinolines and pyrrolophthalazines with good yields and high values of diastereo- and enantioselectivity. Moreover, a mechanistic study has been carried out based on DFT calculations and experimental data which have allowed us to propose that the (3+2) cycloaddition reaction follows a sequential Michael addition/Mannich cyclization pathway. The formation of the iminium ion as a result of the condensation between the a,b-unsaturated aldehyde and the catalyst plays an essential role, regarding both reactivity and stereoselectivity. On the other hand we have developed a methodology to carry out a cascade Michael/Henry reaction followed by a sequential dehydration. Starting from simple substrates (2-nitromethylacrilates and a,b-unsaturated aldehydes) and employing a prolinol-derivative catalyst a series of quiral nitrocyclohexadienes have been synthesized.
Resumo:
302 p. : gráf.
Resumo:
[EN] A review focused on recent advances in intramolecular aza-Wittig reaction of phosphazenes with several carbonyl or analogous compounds is reported. Phosphazenes afford intramolecular aza-Wittig reaction with different groups within the molecule as aldehydes, ketones, esters, thioesters, amides, anhydrides and sulfimides. One of the most important applications of this reaction is the synthesis of a wide range of heterocyclic compounds, ranging from simple monocyclic compounds to complex polycyclic and macrocyclic systems.
Resumo:
In this work, the volatile fraction of unsmoked and smoked Herreno cheese, a type of soft cheese from the Canary Islands, has been characterized for the first time. In order to evaluate if the position in the smokehouse could influence the volatile profile of the smoked variety, cheeses smoked at two different heights were studied. The volatile components were extracted by Solid Phase Microextraction using a divinylbenzene/carboxen/polydimethylsiloxane fiber, followed by Gas Chromatography/Mass Spectrometry. In total, 228 components were detected. The most numerous groups of components in the unsmoked Herreno cheese were hydrocarbons, followed by terpenes and sesquiterpenes, whereas acids and ketones were the most abundant. It is worth noticing the high number of aldehydes and ketones, and the low number of alcohols and esters in this cheese in relation to others, as well as the presence of some specific unsaturated hydrocarbons, terpenes, sesquiterpenes and nitrogenated derivatives. The smoking process enriches the volatile profile of Herreno cheese with ketones and diketones, methyl esters, aliphatic and aromatic aldehydes, hydrocarbons, terpenes, nitrogenated compounds, and especially with ethers and phenolic derivatives. Among these, methylindanones or certain terpenes like a-terpinolene, have not been detected previously in other types of smoked cheese. Lastly, the results obtained suggest a slightly higher smoking degree in the cheeses smoked at a greater height.
Resumo:
The management of municipal solid waste (MSW), particularly the role of incineration, is currently a subject of public debate. Incineration shows to be a good alternative of reducing the volume of waste and eliminating certain infectious components. Moreover, Municipal Waste Incinerators (MWI), are reported to be highly hygienic and apart from that MWIs are immediately effective in terms of transport (incinerators can be built close to the waste sources) and incineration's nature. Nevertheless, the emissions of many hazardous substances make the Municipal Waste Incineration (MWI) plants to be unpopular. Metals (especially lead, manganese, cadmium, chromium and mercury) are concentrated in fly and bottom ashes. Furthermore, incomplete combustion produces a wide variety of potentially hazardous organic compounds, such as aldehydes, polycyclic aromatic hydrocarbons (PAH), chlorinated hydrocarbons including polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF), and even acid gases, including NOx. Many of these hazardous substances are carcinogenic and some have direct systemic toxicity.