4 resultados para 240300 Atomic and Molecular Physics
Resumo:
134 p.
Resumo:
270 p.
Resumo:
[en]Human papillomavirus (HPV) belongs to the Papillomaviridae virus family and it is one of the most common sexual transmission infections. HPV genome is composed of eight genes, including two early genes and six late genes. Among these late genes, E6 and E7 code for proteins that trigger cell-cycle re-entry in infected cells, which can lead to cervical cancer development. The IARC (International Agency for Research Cancer) proposed a guideline based on Hill’s criteria to determine whether the relation between HPV infection and cervical cancer is causal or not. Epidemiological studies have demonstrated that HPV infection is a necessary but non-sufficient cause for cervical cancer. Furthermore, HPV infection is considered the first necessary cause described of a human cancer, being HPV16 and 18 carcinogenic to humans and the most studied types. Cervical cancer is the second leading cause of cancer death among women worldwide. Different screening programs are carried out with the aim of preventing cervical cancer; such as cytologies and HPV tests. There are two main methods which are equally usable to detect HPV: the real-time PCR assays and the array assays. Regarding the molecular mechanisms of HPV mediated malignancies, E2, E6 and E7 proteins of HPV16 lead to immune response evasion, inducing IL-10 and TGF-β1 gene expression. Besides, E6 and E7 proteins allow cell-cycle reentry, phosphorylating RB and ubiquitinating p53 respectively. HPV genome integration in host genome leads to the alteration of host and viral genes expression, including oncogenes and tumor suppressor genes. However, the differences of E6 and E7 oncoproteins in different HPV types is poorly known due to the fact that almost the most studied HPV type has been HPV16.
Resumo:
Introduction In the preantibiotic era Streptococcus pyogenes was a common cause of severe pneumonia but currently, except for postinfluenza complications, it is not considered a common cause of community-acquired pneumonia in adults. Aim and Material and Methods This study aimed to identify current clinical episodes of S. pyogenes pneumonia, its relationship with influenza virus circulation and the genotypes of the involved isolates during a decade in a Southern European region (Gipuzkoa, northern Spain). Molecular analysis of isolates included emm, multilocus-sequence typing, and superantigen profile determination. Results Forty episodes were detected (annual incidence 1.1 x 100,000 inhabitants, range 0.29-2.29). Thirty-seven episodes were community-acquired, 21 involved an invasive infection and 10 developed STSS. The associated mortality rate was 20%, with half of the patients dying within 24 hours after admission. Influenza coinfection was confirmed in four patients and suspected in another. The 52.5% of episodes occurred outside the influenza seasonal epidemic. The 67.5% of affected persons were elderly individuals and adults with severe comorbidities, although 13 patients had no comorbidities, 2 of them had a fatal outcome. Eleven clones were identified, the most prevalent being emm1/ST28 (43.6%) causing the most severe cases. Conclusions S. pyogenes pneumonia had a continuous presence frequently unrelated to influenza infection, being rapidly fatal even in previously healthy individuals.