5 resultados para 230106 Real and Complex Functions
Resumo:
Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.
Resumo:
Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.
Resumo:
[EN]These feedback devices are used to improve the quality of chest compressions while performing CPR technique, as they provide real time information to guide the rescuer during resuscitation attempts. Most feedback systems on the market are based on accelerometers and additional sensors or reference signals, used for calculating the displacement of the chest from the acceleration signal. This makes them expensive and complex devices. With the aim of optimizing these feedback systems and overcoming their limitations, in this document we propose three alternative methods for calculating the depth of chest compressions. These methods differ from the ones existing so far in that they use exclusively the chest acceleration signal to compute the displacement. With their implementation, it would be possible to develop systems to provide accurate feedback more easily and economically. In this context, this document details the design and implementation of the three methods and the development of a software environment to analyze the accuracy of each of them and compare the results by means of a detailed calculation of errors. Furthermore, in order to evaluate the methods a database is required, and it can be compiled using a sensorized manikin to record the acceleration signal and the gold standard chest compression depth. The database generated will be used for other studies related to the estimation of the compression depth, because the signals obtained in the manikin platform are very similar to those recorded during a real resuscitation episode.
Resumo:
Comunicacion a congreso: Póster presentado en VIII Reunión Científica de Bioinorgánica – Bioburgos 2013 (Burgos, 7 al 10 de julio de 2013)
Resumo:
4th International Workshop on Transverse Polisarization Phenomena in Hard Processes (TRANSVERSITY 2014)