3 resultados para 0.9 per mil were added


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cataract extraction. We developed a new appropriateness of indications tool for cataract following the RAND method. We tested the validity of our panel results. Methods: Criteria were developed using a modified Delphi panel judgment process. A panel of 12 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the influence of all variables on the final panel score using linear and logistic regression models. The explicit criteria developed were summarized by classification and regression tree analysis. Results: Of the 765 indications evaluated by the main panel in the second round, 32.9% were found appropriate, 30.1% uncertain, and 37% inappropriate. Agreement was found in 53% of the indications and disagreement in 0.9%. Seven variables were considered to create the indications and divided into three groups: simple cataract, with diabetic retinopathy, or with other ocular pathologies. The preoperative visual acuity in the cataractous eye and visual function were the variables that best explained the panel scoring. The panel results were synthesized and presented in three decision trees. Misclassification error in the decision trees, as compared with the panel original criteria, was 5.3%. Conclusion: The parameters tested showed acceptable validity for an evaluation tool. These results support the use of this indication algorithm as a screening tool for assessing the appropriateness of cataract extraction in field studies and for the development of practice guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Budesonide has a long history as intranasal drug, with many marketed products. Efforts should be made to demonstrate the therapeutic equivalence and safety comparability between them. Given that systemic availability significantly varies from formulations, the clinical comparability of diverse products comes to be of clinical interest and a regulatory requirement. The aim of the present study was to compare the systemic availability, pharmacodynamic effect, and safety of two intranasal budesonide formulations for the treatment of rhinitis. Methods: Eighteen healthy volunteers participated in this randomised, controlled, crossover, clinical trial. On two separated days, subjects received a single dose of 512 mu g budesonide (4 puffs per nostril) from each of the assayed devices (Budesonida nasal 64 (R), Aldo-Union, Spain and Rhinocort 64 (R), AstraZeneca, Spain). Budesonide availability was determined by the measurement of budesonide plasma concentration. The pharmacodynamic effect on the hypothalamic-adrenal axis was evaluated as both plasma and urine cortisol levels. Adverse events were tabulated and described. Budesonide availability between formulations was compared by the calculation of 90% CI intervals of the ratios of the main pharmacokinetic parameters describing budesonide bioavailability. Plasma cortisol concentration-time curves were compared by means of a GLM for Repeated Measures. Urine cortisol excretion between formulations was compared through the Wilcoxon's test. Results: All the enroled volunteers successfully completed the study. Pharmacokinetic parameters were comparable in terms of AUC(t) (2.6 +/- 1.5 vs 2.2 +/- 0.7), AUCi (2.9 +/- 1.5 vs 2.4 +/- 0.7), t(max) (0.4 +/- 0.1 vs 0.4 +/- 0.2), C(max)/AUC(i) (0.3 +/- 0.1 vs 0.3 +/- 0.0), and MRT (5.0 +/- 1.4 vs 4.5 +/- 0.6), but not in the case of C(max) (0.9 +/- 0.3 vs 0.7 +/- 0.2) and t(1/2) (3.7 +/- 1.8 vs 2.9 +/- 0.4). The pharmacodynamic effects, measured as the effect over plasma and urine cortisol, were also comparables between both formulations. No severe adverse events were reported and tolerance was comparable between formulations. Conclusion: The systemic availability of intranasal budesonide was comparable for both formulations in terms of most pharmacokinetic parameters. The pharmacodynamic effect on hypothalamic-pituitary-adrenal axis was also similar. Side effects were scarce and equivalent between the two products. This methodology to compare different budesonide-containing devices is reliable and easy to perform, and should be recommended for similar products intented to be marketed or already on the market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.