4 resultados para [JEL:C1] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General
Resumo:
Contributed to: Fusion of Cultures: XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
Contributed to: Fusion of Cultures. XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
Background: Few studies have analyzed predictors of length of stay (LOS) in patients admitted due to acute bipolar manic episodes. The purpose of the present study was to estimate LOS and to determine the potential sociodemographic and clinical risk factors associated with a longer hospitalization. Such information could be useful to identify those patients at high risk for long LOS and to allocate them to special treatments, with the aim of optimizing their hospital management. Methods: This was a cross-sectional study recruiting adult patients with a diagnosis of bipolar disorder (Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) criteria) who had been hospitalized due to an acute manic episode with a Young Mania Rating Scale total score greater than 20. Bivariate correlational and multiple linear regression analyses were performed to identify independent predictors of LOS. Results: A total of 235 patients from 44 centers were included in the study. The only factors that were significantly associated to LOS in the regression model were the number of previous episodes and the Montgomery-Åsberg Depression Rating Scale (MADRS) total score at admission (P < 0.05). Conclusions: Patients with a high number of previous episodes and those with depressive symptoms during mania are more likely to stay longer in hospital. Patients with severe depressive symptoms may have a more severe or treatment-resistant course of the acute bipolar manic episode.