5 resultados para weak power grids
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
261 p.
Resumo:
Nowadays, Power grids are critical infrastructures on which everything else relies, and their correct behavior is of the highest priority. New smart devices are being deployed to be able to manage and control power grids more efficiently and avoid instability. However, the deployment of such smart devices like Phasor Measurement Units (PMU) and Phasor Data Concentrators (PDC), open new opportunities for cyber attackers to exploit network vulnerabilities. If a PDC is compromised, all data coming from PMUs to that PDC is lost, reducing network observability. Our approach to solve this problem is to develop an Intrusion detection System (IDS) in a Software-defined network (SDN). allowing the IDS system to detect compromised devices and use that information as an input for a self-healing SDN controller, which redirects the data of the PMUs to a new, uncompromised PDC, maintaining the maximum possible network observability at every moment. During this research, we have successfully implemented Self-healing in an example network with an SDN controller based on Ryu controller. We have also assessed intrinsic vulnerabilities of Wide Area Management Systems (WAMS) and SCADA networks, and developed some rules for the Intrusion Detection system which specifically protect vulnerabilities of these networks. The integration of the IDS and the SDN controller was also successful. \\To achieve this goal, the first steps will be to implement an existing Self-healing SDN controller and assess intrinsic vulnerabilities of Wide Area Measurement Systems (WAMS) and SCADA networks. After that, we will integrate the Ryu controller with Snort, and create the Snort rules that are specific for SCADA or WAMS systems and protocols.
Resumo:
Low Voltage (LV) electricity distribution grid operations can be improved through a combination of new smart metering systems' capabilities based on real time Power Line Communications (PLC) and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.
Resumo:
EuroPES 2009
Resumo:
Smart Grids are becoming a reality all over the world. Nowadays, the research efforts for the introduction and deployment of these grids are mainly focused on the development of the field of Smart Metering. This emerging application requires the use of technologies to access the significant number of points of supply (PoS) existing in the grid, covering the Low Voltage (LV) segment with the lowest possible costs. Power Line Communications (PLC) have been extensively used in electricity grids for a variety of purposes and, of late, have been the focus of renewed interest. PLC are really well suited for quick and inexpensive pervasive deployments. However, no LV grid is the same in any electricity company (utility), and the particularities of each grid evolution, architecture, circumstances and materials, makes it a challenge to deploy Smart Metering networks with PLC technologies, with the Smart Grid as an ultimate goal. This paper covers the evolution of Smart Metering networks, together with the evolution of PLC technologies until both worlds have converged to project PLC-enabled Smart Metering networks towards Smart Grid. This paper develops guidelines over a set of strategic aspects of PLC Smart Metering network deployment based on the knowledge gathered on real field; and introduces the future challenges of these networks in their evolution towards the Smart Grid.