3 resultados para track system
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This paper sets out an optimum synthesis methodology for wheel profiles of railway vehicles in order to secure good dynamic behaviour with different track configurations. Specifically, the optimisation process has been applied to the case of rail wheelsets mounted on double gauge bogies, that move over two different gauges, which also have different types of rail: the Iberian gauge (1668 mm) and the UIC gauge (1435 mm). Optimisation is performed using Genetic Algorithms and traditional optimisation methods in a complementary way. The objective function used is based on an ideal equivalent conicity curve which ensures good stability on straight sections and also proper negotiation of curves. To this end the curve is constructed in such a way that it is constant with a low value for small lateral wheelset displacements (with regard to stability), and increases as the displacements increase (to facilitate negotiation of curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be secured where the contact points have a larger distribution over the active contact areas, making wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that is closer to the target conicity for both gauges studied, producing better curve negotiation while maintaining good stability on straight sections of track. The paper shows the resultant wheel profile, the contact curves it produces, and a number of dynamic analyses demonstrating better dynamic behaviour of the synthesised wheel on curved sections with respect to the original wheel.
Modelling rail corrugation with specific track parameters focusing on ballasted track and slab track
Resumo:
The objective of this paper is to compare 3 types of track (high performance ballasted track, STEDEF and AFTRAV) from the corrugation growth point of view. This work has considered different vehicle speeds and track radii, and the results have taken into account the four wheels of a bogie. These tracks have been studied using Finite Elements with Nastran-Patran and RACING, a tool developed in Matlab by the authors which estimates the corrugation growth tendency. The tracks are studied using the Finite Strip Method and the Periodic Structure Theory. Lateral and vertical receptances for track and vehicle have been obtained, as well as the corrugation growth functions. In the paper the tracks are ranked according to corrugation development.
Resumo:
POWERENG 2011