4 resultados para testicular lobes

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using N-15-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of endogenous opioid peptides in different testicular cell types has been extensively characterized and provides evidence for the participation of the opioid system in the regulation of testicular function. However, the exact role of the opioid system during the spermatogenesis has remained controversial since the presence of the mu-, delta-and kappa-opioid receptors in spermatogenic cells was yet to be demonstrated. Through a combination of quantitative real-time PCR, immunofluorescence, immunohistochemistry and flow cytometry approaches, we report for the first time the presence of active mu-, deltaand kappa-opioid receptors in mouse male germ cells. They show an exposition time-dependent response to opioid agonist, hence suggesting their active involvement in spermatogenesis. Our results contribute to understanding the role of the opioid receptors in the spermatogenesis and could help to develop new strategies to employ the opioid system as a biochemical tool for the diagnosis and treatment of male infertility.