2 resultados para strain gauges

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sets out an optimum synthesis methodology for wheel profiles of railway vehicles in order to secure good dynamic behaviour with different track configurations. Specifically, the optimisation process has been applied to the case of rail wheelsets mounted on double gauge bogies, that move over two different gauges, which also have different types of rail: the Iberian gauge (1668 mm) and the UIC gauge (1435 mm). Optimisation is performed using Genetic Algorithms and traditional optimisation methods in a complementary way. The objective function used is based on an ideal equivalent conicity curve which ensures good stability on straight sections and also proper negotiation of curves. To this end the curve is constructed in such a way that it is constant with a low value for small lateral wheelset displacements (with regard to stability), and increases as the displacements increase (to facilitate negotiation of curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be secured where the contact points have a larger distribution over the active contact areas, making wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that is closer to the target conicity for both gauges studied, producing better curve negotiation while maintaining good stability on straight sections of track. The paper shows the resultant wheel profile, the contact curves it produces, and a number of dynamic analyses demonstrating better dynamic behaviour of the synthesised wheel on curved sections with respect to the original wheel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT tecniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 degrees C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).