3 resultados para split-operator scheme

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fields of organic electronics and spintronics have the potential to revolutionize the electronics industry. Finding the right materials that can retain their electrical and spin properties when combined is a technological and fundamental challenge. We carry out the study of three archetypal organic molecules in intimate contact with the BiAg2 surface alloy. We show that the BiAg2 alloy is an especially suited substrate due to its inertness as support for molecular films, exhibiting an almost complete absence of substrate-molecular interactions. This is inferred from the persistence of a completely unaltered giant spin-orbit split surface state of the BiAg2 substrate, and from the absence of significant metallic screening of charged molecular levels in the organic layer. Spin-orbit split states in BiAg2 turn out to be far more robust to organic overlayers than previously thought.