4 resultados para skin electrode

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EU]Lan honen helburua, sentsorizatutako panpina kontrolatzeko software bat garatzea da, bihotz biriketako berpiztearen inguruko ikerkuntza sustatzeko helburuarekin. Kontrol hau aurrera eramateko bihotz biriketako berpiztearen inguruko kalitate parametro garrantzitsuenak jasotzen dituzten sentsoreekin hornitutako panpina bat erabili da, softwarearen eta panpinaren sentsoreen arteko interfaze gisa NI-DAQ National Instruments-eko txartela erabili delarik. Eskema honi jarraituz, software honek eskaintzen dituen funtzionalitate garrantzitsuenak hurrengoak dira: panpinaren bihotza simulatuko duen elektrokardiograma seinale bat panpinara transferitzea, sentsoreetatik lortutako informazioa biltegiratzea eta denbora errealean bistaratzea eta aurretiaz grabatutako erregistroen erreprodukzioa. Software hau garatzearen arrazoi nagusiak, bihotz biriketako berpiztearen kalitatea hobetzea eta elektrodoen eta pazientearen azalaren arteko kontaktuak elektrokardiograman sortzen duen interferentzia ezaugarritzea dira, bihotz-geldiunea pairatzen duen pazientearen bizi-iraupena handituko duten tresnen garapena sustatuz. Izan ere, bihotz-heriotza da herrialde garatuenen lehen heriotza-arrazoia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Hoy en día las muertes por parada cardiorrespiratoria superan en número a otras más mediáticas como aquellas que se producen por incendios o en accidentes de tráfico, y sin embargo su repercusión es mucho menor. Este hecho debe ser motivo de preocupación ya que, con una correcta formación de la población en materia de resucitación cardíaca, muchas de estas muertes podrían ser evitadas. Con el objetivo de reducir estas estadísticas han surgido multitud de estudios y proyectos de investigación consistentes en tratar de mejorar las herramientas disponibles tanto para personal sanitario como no sanitario. En este marco se encuadra el proyecto presentado en este documento, consistente en la sensorización de un maniquí de entrenamiento para episodios de parada cardiorrespiratoria, el cual ofrecerá la posibilidad de analizar con detalle el artifact o interferencia generada por el rescatador sobre el paciente en el momento de efectuar la maniobra de resucitación, así como la interferencia causada por el contacto electrodo-piel. Paralelamente podrá ser utilizado como mero instrumento de entrenamiento para posibles situaciones reales. El porqué de la utilización de este tipo de maniquíes reside principalmente en la imposibilidad de emplear personas debido a las posibles lesiones torácicas que pueden ocurrir por las compresiones realizadas. Finalmente debe citarse el hecho de que no es imprescindible tener conocimientos médicos para poder aplicar las técnicas básicas de resucitación cardíaca, acción que incrementa las posibilidades de supervivencia de un paciente de manera excepcional, ya que cada minuto que pasa desde la parada cardiorrespiratoria la probabilidad de supervivencia disminuye en un porcentaje significativamente elevado. Tomando como base lo descrito hasta ahora, en este documento se detalla la solución técnica de la sensorización de un maniquí genérico para la adquisición de las señales de fuerza de compresión, aceleración sufrida por el pecho en tres ejes ortogonales, profundidad de compresión, impedancia entre los dos electrodos colocados sobre el pecho del paciente y señal electrocardiográfica emitida por el corazón; además, se incluye la posibilidad de inyectar una señal electrocardiográfica previamente grabada. La base de registros obtenida de estos ensayos podrá ser utilizada posteriormente para su análisis, ya que su similitud con señales extraídas en un caso real es máxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This paper presents a project within that research field. The project consists on the development of an experimental environment comprised by a sensorized practice manikin and a management software system. Manikin model allows the simulation of cardiac arrest episodes on laboratory settings. The management software system adds the capacity to compute and analyze the characteristics of the artifact induced on the electrocardiogram and the thoracic impedance signals by chest compressions during cardiopulmonary resuscitation due to variations of the electrode-skin interface. The main reason for choosing this kind of model is the impossibility to use real people because of the risk of thoracic injuries during chest compression. Moreover, this platform could be used for training in reanimation techniques for real situations. Even laypeople with minimal training can perform cardiopulmonary resuscitation. This can reduce the response time to an emergency while the healthcare personnel arrives, which is key to improve outcomes, since with every minute the chances of survival decrease approximately 10%. It is not necessary to have medical knowledge to perform cardiopulmonary resuscitation, which could increase chances of survival for a patient with an early reanimation since In this context, this paper details the technique solution for the manikin sensorisation to acquire the electrocardiogram, the impedance signal measured between the defibrillation pads placed on the patient’s chest, the compression depth, the compression force and the acceleration experienced by the chest in the three orthogonal axes. Moreover, it is possible to inject a previously recorded electrocardiogram signal.