5 resultados para short implants
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.
Resumo:
[EN]Rumenic acid (cis9,trans11-18:2) is the main natural isomer of conjugated linoleic acid (CLA). Rumenic acid has many purported health benefits, but effects of most other CLA isomers are unknown. Typically trans7,cis9-18:2 is the second most abundant CLA isomer, but it co-elutes with rumenic acid on conventional polar gas chromatography (GC) columns, requiring complimentary analysis with silver-ion high performance liquid chromatography (Ag(+)-HPLC). Herein we report a rapid method for analyzing rumenic acid and trans7,cis9-18:2 using a 30 m ionic-liquid GC column. Optimal resolution of the two CLA isomers was at 145 degrees C and analysis of backfat from barley-fed cattle compared well with GC/Ag(+)-HPLC (y =0.978x - 0.031, r =0.985, P <0.001).
Resumo:
[EN] The objective of this study was to determine whether a short training program, using real foods, would decreased their portion-size estimation errors after training. 90 student volunteers (20.18±0.44 y old) of the University of the Basque Country (Spain) were trained in observational techniques and tested in food-weight estimation during and after a 3-hour training period. The program included 57 commonly consumed foods that represent a variety of forms (125 different shapes). Estimates of food weight were compared with actual weights. Effectiveness of training was determined by examining change in the absolute percentage error for all observers and over all foods over time. Data were analyzed using SPSS vs. 13.0. The portion-size errors decreased after training for most of the foods. Additionally, the accuracy of their estimates clearly varies by food group and forms. Amorphous was the food type estimated least accurately both before and after training. Our findings suggest that future dietitians can be trained to estimate quantities by direct observation across a wide range of foods. However this training may have been too brief for participants to fully assimilate the application.
Resumo:
290 p.
Resumo:
[EN] Protein Kinase G (PKG) or cGMP-dependent protein kinases (PKG) have been shown to play an important role in resistance to abiotic stressors such as high temperatures or oxygen deprivation in Drosophila melanogaster. In Drosophila, the foraging gene encodes a PKG; natural variants for this gene exist, which differ in the level of expression of PKG: rovers (forR allele) which express high PKG levels, and sitters (forS allele) which express lower PKG levels. This project explores the differences in recovery from short periods of anoxia between natural variants (focusing on forS2, flies with a sitter gene in a rover background), as well as mutants with insertions in the foraging gene and RNAi recombinants that show a reduced PKG expression. The parameters measured were time to recovery and level of activity after anoxia. The results showed lower activity after anoxia in sitters than in rovers, reflecting a worse recovery from the anoxic coma in flies with lower PKG levels.