5 resultados para reverse transcriptase inhibitors

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Noroviruses (NoVs) are genetically diverse, with genogroup II-and within it-genotype 4 (GII.4) being the most prevalent cause of acute gastroenteritis worldwide. The aim of this study was to characterize genogroup II NoV causing acute gastroenteritis in the Basque Country (northern Spain) from 2009-2012. Methods: The presence of NoV RNA was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR) in stool specimens from children younger than 15 years old with community-acquired acute gastroenteritis, and from hospitalized adults or elderly residents of nursing homes with acute gastroenteritis. For genotyping, the open reading frames ORF1 (encoding the polymerase) and ORF2 (encoding the major capsid protein) were partially amplified and sequenced. Recombinant strains were confirmed by PCR of the ORF1/ORF2 junction region. Results: NoV was detected in 16.0% (453/2826) of acute gastroenteritis episodes in children younger than 2 years, 9.9% (139/1407) in children from 2 to 14 years, and 35.8% (122/341) in adults. Of 317 NoVs characterized, 313 were genogroup II and four were genogroup I. The GII.4 variants Den Haag-2006b and New Orleans-2009 predominated in 2009 and 2010-2011, respectively. In 2012, the New Orleans-2009 variant was partially replaced by the Sydney-2012 variant (GII.Pe/GII.4) and New Orleans-2009/Sydney-2012 recombinant strains. The predominant capsid genotype in all age groups was GII.4, which was the only genotype detected in outbreaks. The second most frequent genotype was GII.3 (including the recently described recombination GII.P16/GII.3), which was detected almost exclusively in children. Conclusion: Nine different genotypes of NoV genogroup II were detected; among these, intergenotype recombinant strains represented an important part, highlighting the role of recombination in the evolution of NoVs. Detection of new NoV strains, not only GII.4 strains, shortly after their first detection in other parts of the world shows that many NoV strains can spread rapidly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we define a cost sharing rule for cost sharing problems. This rule is related to the serial cost-sharing rule defined by Moulin and Shenker (1992). We give some formulas and axiomatic characterizations for the new rule. The axiomatic characterizations are related to some previous ones provided by Moulin and Shenker (1994) and Albizuri (2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In complex with its cofactor UAF1, the USP1 deubiquitinase plays an important role in cellular processes related to cancer, including the response to DNA damage. The USP1/UAF1 complex is emerging as a novel target in cancer therapy, but several aspects of its function and regulation remain to be further clarified. These include the role of the serine 313 phosphorylation site, the relative contribution of different USP1 sequence motifs to UAF1 binding, and the potential effect of cancer-associated mutations on USP1 regulation by autocleavage. Methods: We have generated a large set of USP1 structural variants, including a catalytically inactive form (C90S), non-phosphorylatable (S313A) and phosphomimetic (S313D) mutants, deletion mutants lacking potential UAF1 binding sites, a mutant (GG/AA) unable to undergo autocleavage at the well-characterized G670/G671 diglycine motif, and four USP1 mutants identified in tumor samples that cluster around this cleavage site (G667A, L669P, K673T and A676T). Using cell-based assays, we have determined the ability of these mutants to bind UAF1, to reverse DNA damage-induced monoubiquitination of PCNA, and to undergo autocleavage. Results: A non-phosphorylatable S313A mutant of USP1 retained the ability to bind UAF1 and to reverse PCNA ubiquitination in cell-based assays. Regardless of the presence of a phosphomimetic S313D mutation, deletion of USP1 fragment 420-520 disrupted UAF1 binding, as determined using a nuclear relocation assay. The UAF1 binding site in a second UAF1-interacting DUB, USP46, was mapped to a region homologous to USP1(420-520). Regarding USP1 autocleavage, co-expression of the C90S and GG/AA mutants did not result in cleavage, while the cancer-associated mutation L669P was found to reduce cleavage efficiency. Conclusions: USP1 phosphorylation at S313 is not critical for PCNA deubiquitination, neither for binding to UAF1 in a cellular environment. In this context, USP1 amino acid motif 420-520 is necessary and sufficient for UAF1 binding. This motif, and a homologous amino acid segment that mediates USP46 binding to UAF1, map to the Fingers sub-domain of these DUBs. On the other hand, our results support the view that USP1 autocleavage may occur in cis, and can be altered by a cancer-associated mutation.