5 resultados para representation and learning
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.
Resumo:
[EN]In this paper we deal with distributions over permutation spaces. The Mallows model is the mode l in use. The associated distance for permutations is the Hamming distance.
Resumo:
[EN]In this paper we deal with probability distributions over permutation spaces. The Probability model in use is the Mallows model. The distance for permutations that the model uses in the Ulam distance.
Resumo:
2nd International Conference on Education and New Learning Technologies
Resumo:
21 p.