6 resultados para public learning space
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.
Resumo:
6 p.
Resumo:
Background: The integrated treatment of first episode psychosis has been shown to improve functionality and negative symptoms in previous studies. In this paper, we describe a study of integrated treatment (individual psychoeducation complementary to pharmacotherapy) versus treatment as usual, comparing results at baseline with those at 6-month re-assessment (at the end of the study) for these patients, and online training of professionals to provide this complementary treatment, with the following objectives: 1) to compare the efficacy of individual psychoeducation as add-on treatment versus treatment as usual in improving psychotic and mood symptoms; 2) to compare adherence to medication, functioning, insight, social response, quality of life, and brain-derived neurotrophic factor, between both groups; and 3) to analyse the efficacy of online training of psychotherapists. Methods/design: This is a single-blind randomised clinical trial including patients with first episode psychosis from hospitals across Spain, randomly assigned to either a control group with pharmacotherapy and regular sessions with their psychiatrist (treatment as usual) or an intervention group with integrated care including treatment as usual plus a psychoeducational intervention (14 sessions). Training for professionals involved at each participating centre was provided by the coordinating centre (University Hospital of Alava) through video conferences. Patients are evaluated with an extensive battery of tests assessing clinical and sociodemographic characteristics (Positive and Negative Syndrome Scale, State-Trait Anxiety Inventory, Liebowitz Social Anxiety Scale, Hamilton Rating Scale for Depression, Scale to Assess Unawareness of Mental Disorders, Strauss and Carpenter Prognostic Scale, Global Assessment of Functioning Scale, Morisky Green Adherence Scale, Functioning Assessment Short Test, World Health Organization Quality of Life instrument WHOQOL-BREF (an abbreviated version of the WHOQOL-100), and EuroQoL questionnaire), and brain-derived neurotrophic factor levels are measured in peripheral blood at baseline and at 6 months. The statistical analysis, including bivariate analysis, linear and logistic regression models, will be performed using SPSS. Discussion: This is an innovative study that includes the assessment of an integrated intervention for patients with first episode psychosis provided by professionals who are trained online, potentially making it possible to offer the intervention to more patients.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
Learning to perceive is faced with a classical paradox: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the "laws" of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget's theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget's theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.
Resumo:
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.