12 resultados para poly(methylmethacrylate) modified

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as crosslinker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6 p. [+ 7 p. Supplementary Information]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Diabetic foot ulcers (DFUs) represent a major clinical challenge in the ageing population. To address this problem, rhEGF-loaded Poly-Lactic-co-Glycolic-Acid (PLGA)-Alginate microspheres (MS) were prepared by a modified w/o/w-doubleemulsion/ solvent evaporation method. Different formulations were evaluated with the aim of optimising MSs properties by adding NaCl to the surfactant solution and/or the solvent removal phase and adding alginate as a second polymer. The characterization of the developed MS showed that alginate incorporation increased the encapsulation efficiency (EE) and NaCl besides increasing the EE also became the particle surface smooth and regular. Once the MS were optimised, the target loading of rhEGF was increased to 1% (PLGA-Alginate MS), and particles were sterilised by gamma radiation to provide the correct dosage for in vivo studies. In vitro cell culture assays demonstrated that neither the microencapsulation nor the sterilisation process affected rhEGF bioactivity or rhEGF wound contraction. Finally, the MS were evaluated in vivo for treatment of the full-thickness wound model in diabetised Wistar rats. rhEGF MS treated animals showed a statistically significant decrease of the wound area by days 7 and 11, a complete re-epithelisation by day 11 and an earlier resolution of the inflammatory process. Overall, these findings demonstrate the promising potential of rhEGF-loaded MS (PLGA-Alginate MS) to promote faster and more effective wound healing, and suggest its possible application in DFU treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and phase behavior of poly(4-vinylphenol) (PVPh) with poly(vinyl methyl ketone) (PVMK) was investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (T-g) over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained T(g)s are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh) and vinyl methyl ketone (VMK) functional groups. These results were also established by scanning electron microscopy study (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

172 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation behavior and mechanical properties of polycaprolactone/nanohydroxyapatite composite scaffolds are studied in phosphate buffered solution (PBS), at 37 degrees C, over 16 weeks. Under scanning electron microscopy (SEM), it was observed that the longer the porous scaffolds remained in the PBS, the more significant the thickening of the pore walls of the scaffold morphology was. A decrease in the compressive properties, such as the modulus and the strength of the PCL/nHA composite scaffolds, was observed as the degradation experiment progressed. Samples with high nHA concentrations degraded more significantly in comparison to those with a lower content. Pure PCL retained its mechanical properties comparatively well in the study over the period of degradation. After the twelfth week, the results obtained by GPC analysis indicated a significant reduction in their molecular weight. The addition of nHA particles to the scaffolds accelerated the weight loss of the composites and increased their capacity to absorb water during the initial degradation process. The addition of these particles also affected the degradation behavior of the composite scaffolds, although they were not effective at compensating the decrease in pH prompted by the degradation products of the PCL.