8 resultados para political movements

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent evolution of contemporary social movements three phases can be identified. The first phase is marked by the labour movement and the systemic importance attributed to the labour conflict in industrial societies. This conflict has been interpreted as a consequence of the shortcoming of social integration mechanisms by Emile Durkheim, as a rational conflict by entrepreneurs’ and workers’ interests by Max Wener, and as a central class struggle for the transformation of society by Karl Marx. The second phase in this development was led by the new social movements of the post-industrial society of the 1960s and 1970s’ students, women and environmentalist movements. Two new analytical perspectives have explained these movements’ meaning and actions. Resource mobilization theory (McAdam and Tilly) has focuses on rational attitudes and conflicts. Actionalist sociology, in turn, has identified the new protagonists of social conflicts that replaced the labour movement in postindustrial societies. The third phase emerges in a world characterized by the ascendance of markets, the increasingly prominent role of financial capital flows, the closure of communities, and fundamentalism. In this context, human rights and pro-democratization movements constitute alternatives to global domination and the systemic conditioning of individual and groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ashes of political and socio-economic collapse, social movements sometimes rise like a phoenix. Little more than a year has passed since the Tunisian uprisings, the spark that ignited a series of “mobilizations of the indignant” that spread like wildfire around the world. Many observers have reported on these unprecedented global protests. They have portrayed citizens who declare feeling marginalized if not scapegoated, and who reject the increasing inequalities between rich and poor, the declining mobility of most, and the “disclassment” of many. They have shown, as well, massive protests against governments and politicians that are perceived as indifferent at best, duplicitous at worst, and in any event as blatantly closed to popular concerns. Many journalists have indeed asked what took so long for people to protest given this fatal combination. For the social scientist, however, the questions of who, why and how mobilizes are not so simple. There are specific problematics of mediation between structure, culture and individual or collective agency that need to be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates whether the effect of political institutions on sectoral economic performance is determined by the level of technological development of industries. Building on previous studies on the linkages among political institutions, technology and economic growth, we employ the dynamic panel Generalized Method of Moments (GMM) estimator for a sample of 4,134 country-industries from 61 industries and 89 countries over the 1990-2010 period. Our main findings suggest that changes of political institutions towards higher levels of democracy, political rights and civil liberties enhance economic growth in technologically developed industries. On the contrary, the same institutional changes might retard economic growth of those industries that are below a technological development threshold. Overall, these results give evidence of a technologically conditioned nature of political institutions to be growth-promoting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.