12 resultados para planning (artificial intelligence)
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
25 p.
Resumo:
183 p.
Resumo:
The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Lius algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.
Resumo:
Castellano: A lo largo de este proyecto se ha desarrollado un sistema de bajo coste para la tomade electrocardiogramas y posterior visualizacin de los mismos en un dispositivo Android. Adems se ha creado un mdulo inteligente capaz de realizar un diagnstico de manera automtica y razonada sobre los datos recogidos. El proyecto se ha realizado principalmente sobre tecnologas abiertas: Arduino como componente central del sistema electrnico, Android para visualizar datos en una plataforma mvil y CLIPS como motor sobre el cual se ha desarrollado el sistema experto que realiza el diagnstico.
Resumo:
En los trabajos expuestos en esta memoria de tesis, hemos analizado elefecto que tienen sobre la capacidad de aprendizaje de diferentes algoritmosde clasificacin los cambios en la distribucin de clases, teniendo encuenta para ello, diferentes mtodos de remuestreo de datos.En concreto se ha analizado este efecto en el conocido algoritmo deconstruccin de rboles de clasificacin propuesto por Quinlan, el algoritmoC4.5, y en el algoritmo de construccin de rboles consolidados, elalgoritmo CTC, propuesto por el grupo de investigacin ALDAPA de laUniversidad del Pas Vasco que, basado en el mismo C4.5, obtiene un rbol declasificacin pero basado en un conjunto de muestras.As mismo, planteamos cmo encontrar la distribucin de clases ms adecuadapara un algoritmo de clasificacin y mtodo de remuestreo concretos.
Resumo:
138 p.
Resumo:
179 p.
Resumo:
142 p.
Resumo:
188 p.
Resumo:
150 p.
Resumo:
162 p.
Resumo:
194 p.