3 resultados para pentetreotide in 111

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of cerebral senile plaques composed of amyloid beta peptide (A beta) is a fundamental feature of Alzheimer's disease (AD). Glial cells and more specifically microglia become reactive in the presence of A beta. In a triple transgenic model of AD (3 x Tg-AD), we found a significant increase in activated microglia at 12 (by 111%) and 18 (by 88%) months of age when compared with non-transgenic (non-Tg) controls. This microglial activation correlated with A beta plaque formation, and the activation in microglia was closely associated with A beta plaques and smaller A beta deposits. We also found a significant increase in the area density of resting microglia in 3 x Tg-AD animals both at plaque-free stage (at 9 months by 105%) and after the development of A plaques (at 12 months by 54% and at 18 months by 131%). Our results show for the first time that the increase in the density of resting microglia precedes both plaque formation and activation of microglia by extracellular A beta accumulation. We suggest that AD pathology triggers a complex microglial reaction: at the initial stages of the disease the number of resting microglia increases, as if in preparation for the ensuing activation in an attempt to fight the extracellular A beta load that is characteristic of the terminal stages of the disease. Cell Death and Disease (2010) 1, e1; doi:10.1038/cddis.2009.2; published online 14 January 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode stems from the anisotropy present in the graphene band structure near the Dirac points K and K'. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma K and Gamma K' directions, which leads to two modes of collective oscillation: one mode in which the two types of carriers oscillate in phase with one another (this is the conventional 2D graphene plasmon, which at long wavelengths (q -> 0) has the same dispersion, q(1/2), as the conventional 2D plasmon of a 2D free electron gas), and the other mode found here corresponds to a low-frequency acoustic oscillation (whose energy exhibits at long-wavelengths a linear dependence on the 2D wavenumber q) in which the two types of carriers oscillate out of phase. This prediction represents a realization of acoustic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fields of organic electronics and spintronics have the potential to revolutionize the electronics industry. Finding the right materials that can retain their electrical and spin properties when combined is a technological and fundamental challenge. We carry out the study of three archetypal organic molecules in intimate contact with the BiAg2 surface alloy. We show that the BiAg2 alloy is an especially suited substrate due to its inertness as support for molecular films, exhibiting an almost complete absence of substrate-molecular interactions. This is inferred from the persistence of a completely unaltered giant spin-orbit split surface state of the BiAg2 substrate, and from the absence of significant metallic screening of charged molecular levels in the organic layer. Spin-orbit split states in BiAg2 turn out to be far more robust to organic overlayers than previously thought.