5 resultados para optimization method

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a method to generate new melodies, based on conserving the semiotic structure of a template piece. A pattern discovery algorithm is applied to a template piece to extract significant segments: those that are repeated and those that are transposed in the piece. Two strategies are combined to describe the semiotic coherence structure of the template piece: inter-segment coherence and intra-segment coherence. Once the structure is described it is used as a template for new musical content that is generated using a statistical model created from a corpus of bertso melodies and iteratively improved using a stochastic optimization method. Results show that the method presented here effectively describes a coherence structure of a piece by discovering repetition and transposition relations between segments, and also by representing the relations among notes within the segments. For bertso generation the method correctly conserves all intra and inter-segment coherence of the template, and the optimization method produces coherent generated melodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the influence on corrugation of the most significant track parameters has been examined. After this parametric study, the optimization of the track parameters to minimize the undulatory wear growth has been achieved. Finally, the influence of the dispersion of the track and contact parameters on corrugation growth has been studied. A method has been developed to obtain an optimal solution of the track parameters which minimizes corrugation growth, thus ensuring that this solution remains optimum despite dispersion of track parameters and wheel-rail contact uncertainties. This work is based on the computer application RACING (RAil Corrugation INitiation and Growth) which has been developed by the authors to predict rail corrugation features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en: 21st World Hydrogen Energy Conference 2016. Zaragoza, Spain. 13-16th June, 2016