4 resultados para nano-grains
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN]A study was conducted on crossbred steers (n=275; 376±924 kg) to evaluate performance and carcass quality of cattle fed wheat or corn dried distillers’ grains with solubles (DDGS). The control ration contained 86.6% rolled barley grain, 5.7% supplement and 7.7% barley silage (DM basis). The four treatments included replacement of barley grain at 20 or 40% of the diet (DM basis) with wheat or corn DDGS. Steers were slaughtered at a common end weight of 645 kg with 100 steers randomly (n=20 per treatment) selected for determination of the retail yield of sub-primal boneless boxed beef (SPBBB). Data were analyzed as a completely randomized design using pen as the experimental unit. Feeding increasing levels of wheat DDGS led to a quadratic increase in dry matter intake (DMI) (P<0.01), whereas increasing levels of corn DDGS led to a quadratic decrease in DMI (P=0.01). Average daily gain was not influenced (P=0.13) by feeding wheat or corn DDGS, but cattle fed corn DDGS exhibited a quadratic increase (P=0.01) in gain:feed. As a result, a quadratic increase (P<0.01) in calculated NEg of the diet was observed as corn DDGS levels increased. A linear decrease (P=0.04) in days on feed (169, 166 and 154 d) was noted when increasing levels of wheat DDGS (0, 20 and 40%) were fed. Dressing percentage increased in a linear fashion with wheat DDGS (P<0.01) inclusion level and in a quadratic fashion (P=0.01) as corn DDGS inclusion level increased although other carcass traits were not affected (P=0.10) by treatment. The results indicate that replacement of barley grain with corn or wheat DDGS up to 40% of the diet (DM) can lead to superior performance (improved gain:feed or reduced days on feed, respectively) with no detrimental effect on quality grade or carcass SPBBB yield.
Resumo:
In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.
Resumo:
We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + gamma-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of gamma-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices.
Resumo:
The present work is focused on the measurement of workers exposure to nano-TiO2 in the life cycle steps of depollutant mortars. It has been done in the framework of the SCAFFOLD project, which aims at the management of potential risks arising from the use of manufactured nanomaterials in construction. Main findings can be summarized as follows: (1) The occupational exposure to nano-TiO2 is below 0.3 mg/m(3) for all measured scenarios. The highest concentrations were measured during the cleaning task (in the nano-TiO2 manufacturing process) and during the application (spraying) of depollutant coatings on a wall. (2) It was found a high release of particles above the background in several tasks as expected due to the nature of the activities performed. The maximum concentration was measured during drilling and during adding powder materials (mean total particle concentration up to 5.591E+04 particles/cm(3) and 5.69E+04 particles/cm(3)). However, considering data on total particle concentration released, no striking differences have been observed when tasks have been performed using conventional materials in the sector (control) and when using materials doped with nano-objects.