4 resultados para model categories homotopy theory quillen functor equivalence derived adjunction cofibrantly generated
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
257 p.
Resumo:
A disadvantage of multiple-choice tests is that students have incentives to guess. To discourage guessing, it is common to use scoring rules that either penalize wrong answers or reward omissions. These scoring rules are considered equivalent in psychometrics, although experimental evidence has not always been consistent with this claim. We model students' decisions and show, first, that equivalence holds only under risk neutrality and, second, that the two rules can be modified so that they become equivalent even under risk aversion. This paper presents the results of a field experiment in which we analyze the decisions of subjects taking multiple-choice exams. The evidence suggests that differences between scoring rules are due to risk aversion as theory predicts. We also find that the number of omitted items depends on the scoring rule, knowledge, gender and other covariates.
Resumo:
The present project aims to describe and study the nature and transmission of nerve pulses. First we review a classical model by Hodgkin-Huxley which describes the nerve pulse as a pure electric signal which propagates due to the opening of some time- and voltage-dependent ion channels. Although this model was quite successful when introduced, it fails to provide a satisfactory explanation to other phenomena that occur in the transmission of nerve pulses, therefore a new theory seems to be necessary. The soliton theory is one such theory, which we explain after introducing two topics that are important for its understanding: (i) the lipid melting of membranes, which are found to display nonlinearity and dispersion during the melting transition, and (ii) the discovery and the conditions required for the existence of solitons. In the soliton theory, the pulse is presented as an electromechanical soliton which forces the membrane through the transition while propagating. The action of anesthesia is also explained in the new framework by the melting point depression caused by anesthetics. Finally, we present a comparison between the two models.
Resumo:
Hartle's model provides the most widely used analytic framework to describe isolated compact bodies rotating slowly in equilibrium up to second order in perturbations in the context of General Relativity. Apart from some explicit assumptions, there are some implicit, like the "continuity" of the functions in the perturbed metric across the surface of the body. In this work we sketch the basics for the analysis of the second order problem using the modern theory of perturbed matchings. In particular, the result we present is that when the energy density of the fluid in the static configuration does not vanish at the boundary, one of the functions of the second order perturbation in the setting of the original work by Hartle is not continuous. This discrepancy affects the calculation of the change in mass of the rotating star with respect to the static configuration needed to keep the central energy density unchanged.