5 resultados para measurement gap
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This paper presents new evidence on the role of segregation into firms, occupations within a firm and stratification into professional categories within firm-occupations in explaining the gender wage gap. I use a generalized earnings model that allows observed and unobserved group characteristics to have different impact on wages of men and women within the same group. The database is a large sample of individual wage data from the 1995 Spanish Wage Structure Survey. Results indicate that firm segregation in our sample accounts for around one-fifth of the raw gender wage gap. Occupational segregation within firms accounts for about one-third of the raw wage gap, and stratification into different professional categories within firms and occupations explains another one-third of it. The remaining one-fifth of the overall gap arises from better outcomes of men relative to women within professional categories. It is also found that rewards to both observable and unobservable skills, particularly those related to education, are higher for males than for females within the same group. Finally, mean wages in occupations or job categories with a higher fraction of female co-workers are lower, but the negative impact of femaleness in higher for women.
Resumo:
The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.
Resumo:
We provide a model that bridges the gap between two benchmark models of strategic network formation: Jackson and Wolinsky' s model based on bilateral formation of links, and Bala and Goyal's two-way fl ow model, where links can be unilaterally formed. In the model introduced and studied here a link can be created unilaterally. When it is only supported by one of the two players the fl ow through the link suffers a certain decay, but when it is supported by both the fl ow runs without friction. When the decay in links supported by only one player is maximal (i.e. there is no flow) we have Jackson and Wolinsky 's connections model without decay, while when flow in such links is perfect we have Bala and Goyal' s two-way flow model. We study Nash, strict Nash and pairwise stability for the intermediate models. Efficiency and dynamics are also examined.
Resumo:
250 p. + anexos
Resumo:
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 mu m). In the case of surface finish, the absolute error is well below R-a 1 mu m (average value 0.32 mu m). The present approach can be easily generalized to other grinding operations.