2 resultados para interactive value formation
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
I consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called expected fair if for every link in the network both participants gain, marginally, and in discounted, expected terms, the same from it; and it is called a pairwise network formation procedure if the probability that a link is created (or eliminated) is positive if the discounted, expected gains to its two participants are positive too. The main result is the existence, for the discount factor small enough, of an expected fair and pairwise network formation procedure where the allocation rule is component balanced, meaning it distributes the total value of any maximal connected subnetwork among its participants. This existence result holds for all discount factors when the pairwise network formation procedure is restricted. I finally provide some comparison with previous models of farsighted network formation.
Resumo:
[EN] We carry out quasi-classical trajectory caculations for theC + CH+ → C2+ + H reaction on an ad hoc computed high-level ab initio potential energy surface. Thermal rate coefficients at the temperatures of relevance in cold interstellar clouds are derived and compared with the assumed, temperature-independent estimates publicly available in kinetic databases KIDA and UDfA. For a temperature of 10 K the database value overestimates by a factor of two the one obtained by us (thus improperly enhancing the destruction route of CH+ in astrochemical kinetic models) which is seen to double in the temperature range 5–300 K with a sharp increase in the first 50 K. The computed values are fitted via the popular Arrhenius–Kooij formula and best-fitting parameters α = 1:32 X 10-9 cm3s-1, β = 0:10 and γ = 2:19 K to be included in the online mentioned databases are provided. Further investigation shows that the temperature dependence of the thermal rate coefficient better conforms to the recently proposed so-called ‘deformed Arrhenius’ law by Aquilanti and Mundim.