8 resultados para higher curvature gravity
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Gravitational double layers, unlike their classical electromagnetic counterparts, are thought to be forbidden in gravity theories. It has been recently shown, however, that they are feasible in, for instance, gravity theories with a Lagrangian quadratic in the curvature. This is surprising with many potential consequences and the possibility of new physical behaviours. While a clear interpretation seems elusive, several lines of research are open. I present the field equations for double layers, the new physical quantities arising, and several explicit examples
Resumo:
Published as an article in: American Economic Review, 2010, vol. 100, issue 4, pages 1601-15.
Resumo:
We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S4 and in the Euclidean 4-space E4.
Resumo:
Due to the recent implantation of the Bologna process, the definition of competences in Higher Education is an important matter that deserves special attention and requires a detailed analysis. For that reason, we study the importance given to severa! competences for the professional activity and the degree to which these competences have been achieved through the received education. The answers include also competences observed in two periods of time given by individuals of multiple characteristics. In this context and in order to obtain synthesized results, we propose the use of Multiple Table Factor Analysis. Through this analysis, individuals are described by severa! groups, showing the most important variability factors of the individuals and allowing the analysis of the common structure ofthe different data tables. The obtained results will allow us finding out the existence or absence of a common structure in the answers of the various data tables, knowing which competences have similar answer structure in the groups of variables, as well as characterizing those answers through the individuals.
Resumo:
160 p. (Bibliogr. 141-160)
Resumo:
54 p.
Resumo:
Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.
Resumo:
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F (R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory. (C) 2014 The Authors. Published by Elsevier B.V.