4 resultados para graphical representation
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Contributed to: Fusion of Cultures: XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
131 p.: graf.
Resumo:
The digital management of collections in museums, archives, libraries and galleries is an increasingly important part of cultural heritage studies. This paper describes a representation for folk song metadata, based on the Web Ontology Language (OWL) implementation of the CIDOC Conceptual Reference Model. The OWL representation facilitates encoding and reasoning over a genre ontology, while the CIDOC model enables a representation of complex spatial containment and proximity relations among geographic regions. It is shown how complex queries of folk song metadata, relying on inference and not only retrieval, can be expressed in OWL and solved using a description logic reasoner.
Resumo:
Feature-based vocoders, e.g., STRAIGHT, offer a way to manipulate the perceived characteristics of the speech signal in speech transformation and synthesis. For the harmonic model, which provide excellent perceived quality, features for the amplitude parameters already exist (e.g., Line Spectral Frequencies (LSF), Mel-Frequency Cepstral Coefficients (MFCC)). However, because of the wrapping of the phase parameters, phase features are more difficult to design. To randomize the phase of the harmonic model during synthesis, a voicing feature is commonly used, which distinguishes voiced and unvoiced segments. However, voice production allows smooth transitions between voiced/unvoiced states which makes voicing segmentation sometimes tricky to estimate. In this article, two-phase features are suggested to represent the phase of the harmonic model in a uniform way, without voicing decision. The synthesis quality of the resulting vocoder has been evaluated, using subjective listening tests, in the context of resynthesis, pitch scaling, and Hidden Markov Model (HMM)-based synthesis. The experiments show that the suggested signal model is comparable to STRAIGHT or even better in some scenarios. They also reveal some limitations of the harmonic framework itself in the case of high fundamental frequencies.