4 resultados para generalized linear models

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES] Diversos estudios han investigado sobre los posibles determinantes del precio del derecho de emisión europeo. En este trabajo de fin de grado se pretende analizar qué factores influyen en el precio de este producto financiero y de qué manera lo hacen, además de comprobar posibles cambios en el funcionamiento del mercado. La metodología utilizada para llevar a cabo este análisis se basa principalmente en el modelo de regresión lineal general. A diferencia de otros estudios existentes, la muestra utilizada va desde 2008 hasta 2015, por lo que incluye la segunda fase (2008-2012) de este mercado de derechos de emisión y la tercera (2013-2015), lo que permite analizar las posibles diferencias de funcionamiento del mercado entre ambas fases. Los resultados obtenidos sostienen la existencia de este cambio estructural de manera que en la segunda fase los factores más influyentes son el gas natural y el petróleo, mientras que en la tercera fase el comportamiento del mercado cambia drásticamente de forma que el carbón parece ser el factor más influyente.