1 resultado para frequency of speech
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (34)
- Central European University - Research Support Scheme (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (5)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (34)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico de Leiria (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (24)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (124)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (186)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (3)
- Repositorio Academico Digital UANL (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (74)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (13)
- Scielo España (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (10)
- Universidade Federal do Pará (5)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (1)
- University of Michigan (58)
- University of Queensland eSpace - Australia (28)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Accurate and fast decoding of speech imagery from electroencephalographic (EEG) data could serve as a basis for a new generation of brain computer interfaces (BCIs), more portable and easier to use. However, decoding of speech imagery from EEG is a hard problem due to many factors. In this paper we focus on the analysis of the classification step of speech imagery decoding for a three-class vowel speech imagery recognition problem. We empirically show that different classification subtasks may require different classifiers for accurately decoding and obtain a classification accuracy that improves the best results previously published. We further investigate the relationship between the classifiers and different sets of features selected by the common spatial patterns method. Our results indicate that further improvement on BCIs based on speech imagery could be achieved by carefully selecting an appropriate combination of classifiers for the subtasks involved.