15 resultados para feature selection

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project introduces an improvement of the vision capacity of the robot Robotino operating under ROS platform. A method for recognizing object class using binary features has been developed. The proposed method performs a binary classification of the descriptors of each training image to characterize the appearance of the object class. It presents the use of the binary descriptor based on the difference of gray intensity of the pixels in the image. It shows that binary features are suitable to represent object class in spite of the low resolution and the weak information concerning details of the object in the image. It also introduces the use of a boosting method (Adaboost) of feature selection al- lowing to eliminate redundancies and noise in order to improve the performance of the classifier. Finally, a kernel classifier SVM (Support Vector Machine) is trained with the available database and applied for predictions on new images. One possible future work is to establish a visual servo-control that is to say the reac- tion of the robot to the detection of the object.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundacion Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In real life strategic interactions, decision-makers are likely to entertain doubts about the degree of optimality of their play. To capture this feature of real choice-making, we present here a model based on the doubts felt by an agent about how well is playing a game. The doubts are coupled with (and mutually reinforced by) imperfect discrimination capacity, which we model here by means of similarity relations. We assume that each agent builds procedural preferences de ned on the space of expected payoffs-strategy frequencies attached to his current strategy. These preferences, together with an adaptive learning process lead to doubt-based selection dynamic systems. We introduce the concepts of Mixed Strategy Doubt Equilibria, Mixed Strategy Doubt-Full Equilibria and Mixed Strategy Doubtless Equilibria and show the theoretical and the empirical relevance of these concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drift appears to be crucial to study the stability properties of Nash equilibria in a component specifying different out-of-equilibrium behaviour. We propose a new microeconomic model of drift to be added to the learning process by which agents find their way to equilibrium. A key feature of the model is the sensitivity of the noisy agent to the proportion of agents in his player population playing the same strategy as his current one. We show that, 1. Perturbed Payoff-Positive and PayoffMonotone selection dynamics are capable of stabilizing pure non strict Nash equilibria in either singleton or nonsingleton component of equilibria; 2. The model is relevant to understand the role of drift in the behaviour observed in the laboratory for the Ultimatum Game and for predicting outcomes that can be experimentally tested. Hence, the selection dynamics model perturbed with the proposed drift may be seen as well as a new learning tool to understand observed behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La contaminación del suelo es una de las principales amenazas para los ecosistemas y la salud humana. Actualmente, desde un punto de vista tanto económico como ambiental, la fitoestabilización es la mejor tecnología para remediar suelos contaminados con elevadas concentraciones de metales como son los suelos mineros. La fitoestabilización asistida consiste en el empleo de plantas y enmiendas orgánicas y/o inorgánicas con el fin de reducir la movilidad y la biodisponibilidad de los contaminantes y recuperar la salud de suelo. En este trabajo se han realizado ensayos en microcosmos y en campo centrándonos en la salud del suelo minero contaminado con Pb y Zn durante un proceso de fitoestabilización empleando enmiendas orgánicas (purines vacunos, gallinaza, estiércol de oveja y lodos de papelera mezclados con gallinaza) y/o la especie metalífera Festuca rubra con el objetivo de (i) estudiar las interacciones suelo-enmienda responsables de los cambios inducidos por el proceso de quimioestabilización en las propiedades físicoquímicas y biológicas del suelo, (ii) evaluar la efectividad del proceso de fitoestabilización sobre suelos vegetados y de la revegetación sobre suelos desnudos (iii) valorar la idoneidad de distintos indicadores químicos y biológicos (parámetros microbianos y de la vegetación) para monitorizar la efectividad de la fitoestabilización asistida en términos de reducción de la biodisponibilidad de metales en el suelo, mejora de la vegetación y de la recuperación de la salud del suelo. La aplicación de enmiendas al suelo minero supone una entrada de materia orgánica y nutrientes que conduce a una disminución de la biodisponibilidad de metales, facilitando la colonización de las plantas y el crecimiento de la vegetación nativa, además de estimular la actividad microbiana del suelo. El pH del suelo es un factor crítico que condiciona la movilidad de los metales y la toxicidad del suelo. Las poblaciones microbianas de las enmiendas no modificaron la diversidad funcional de las comunidades microbianas nativas de la mina. Los purines vacunos y los lodos de papelera mezclados con gallinaza son los tratamientos más efectivos en el proceso de fitoestabilización asistida bajo condiciones de campo. La gallinaza fue el tratamiento que más estimuló el crecimiento de la vegetación nativa y la colonización en los suelos desnudos. El bioensayo de elongación radical de lechuga es un test sensible, sencillo y barato para evaluar la biodisponibilidad de metal y la ecotoxicidad del suelo. Los tocoferoles son biomarcadores de exposición a metales con potencial para su implementación en bioensayos de toxicidad. Este trabajo permite concluir que la población metalífera de F. rubra, combinada con enmiendas orgánicas, es una excelente candidata para los proyectos de fitoestabilización asistida. Además, la monitorización simultánea de los parámetros fisicoquímicos y microbiológicos del suelo y de su ecotoxicidad permite una evaluación adecuada de la salud del suelo, así como la selección de enmiendas apropiadas para el desarrollo de un proceso fitoestabilizador.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a simple method of characterizing countervailing incentives in adverse selection problems. The key element in our characterization consists of analyzing properties of the full information problem. This allows solving the principal problem without using optimal control theory. Our methodology can also be applied to different economic settings: health economics, monopoly regulation, labour contracts, limited liabilities and environmental regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editores:Micaela Muñoz-Calvo; Carmen Buesa-Gómez