3 resultados para extrinsic aid
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This paper studies the macroeconomic effects of a permanent increase in foreign aid in a model that takes into account environmental quality. We develop a dynamic equilibrium model in which both public investment in infrastructure and environmental protection can be financed using domestic resources and international aid programs. The framework considers four scenarios for international aid: untied aid,aid fully tied to infrastructure, aid fully tied to abatement, and aid equally tied to both types of expenditures. We find that the effects of the transfers may depend on (i) the structural characteristics of the recipient country (the elasticity of substitution in production and its dependence on environment and natural resources) and on (ii) how recipient countries distribute their public expenditure. These results underscore the importance of these factors when deciding how and to what extent to tie aid to infrastructure and/or pollution abatement.
Resumo:
The development of techniques for oncogenomic analyses such as array comparative genomic hybridization, messenger RNA expression arrays and mutational screens have come to the fore in modern cancer research. Studies utilizing these techniques are able to highlight panels of genes that are altered in cancer. However, these candidate cancer genes must then be scrutinized to reveal whether they contribute to oncogenesis or are coincidental and non-causative. We present a computational method for the prioritization of candidate (i) proto-oncogenes and (ii) tumour suppressor genes from oncogenomic experiments. We constructed computational classifiers using different combinations of sequence and functional data including sequence conservation, protein domains and interactions, and regulatory data. We found that these classifiers are able to distinguish between known cancer genes and other human genes. Furthermore, the classifiers also discriminate candidate cancer genes from a recent mutational screen from other human genes. We provide a web-based facility through which cancer biologists may access our results and we propose computational cancer gene classification as a useful method of prioritizing candidate cancer genes identified in oncogenomic studies.
Resumo:
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode stems from the anisotropy present in the graphene band structure near the Dirac points K and K'. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma K and Gamma K' directions, which leads to two modes of collective oscillation: one mode in which the two types of carriers oscillate in phase with one another (this is the conventional 2D graphene plasmon, which at long wavelengths (q -> 0) has the same dispersion, q(1/2), as the conventional 2D plasmon of a 2D free electron gas), and the other mode found here corresponds to a low-frequency acoustic oscillation (whose energy exhibits at long-wavelengths a linear dependence on the 2D wavenumber q) in which the two types of carriers oscillate out of phase. This prediction represents a realization of acoustic