12 resultados para decision error

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]El objeto de este artículo es saber hasta qué punto pudo emplearse la justicia penal como un instrumento más de la política de carácter antijudío desarrollada por las autoridades cristianas de la España medieval a finales del siglo XV, concretamente en los momentos previos a la expulsión. Para indagar sobre esta cuestión se tendrá presente el proceso penal por blasfemia al que fue sometido el judío de Vitoria (Álava) Jato Tello.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the state of the art of the automatic dialogue strategy management using Markov decision processes (MDP) with reinforcement learning (RL) is described. Partially observable Markov decision processes (POMDP) are also described. To test the validity of these methods, two spoken dialogue systems have been developed. The first one is a spoken dialogue system for weather forecast providing, and the second one is a more complex system for train information. With the first system, comparisons between a rule-based system and an automatically trained system have been done, using a real corpus to train the automatic strategy. In the second system, the scalability of these methods when used in larger systems has been tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rating enables the information asymmetry existing in the issuer-investor relationship to be reduced, particularly for issues with a high degree of complexity, as is the case of securitizations. However, there may be a serious conflict of interest between the issuer’s choice and remuneration of the agency and the credit rating awarded, resulting in lower quality and information power of the published rating. In this paper, we propose an explicative model of the number of ratings requested, by analyzing the relevance of the number of ratings to measure the reliability, where multirating is shown to be associated to the quality, size, liquidity and the degree of information asymmetry relating to the issue. Thus, we consider that the regulatory changes that foster the widespread publication of simultaneous ratings could help to alleviate the problem of rating model arbitrage and the crisis of confidence in credit ratings in general and in the securitization issues, in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct experiments to investigate the effects of different majority requirements on bargaining outcomes in small and large groups. In particular, we use a Baron-Ferejohn protocol and investigate the effects of decision rules on delay (number of bargaining rounds needed to reach agreement) and measures of "fairness" (inclusiveness of coalitions, equality of the distribution within a coalition). We find that larger groups and unanimity rule are associated with significantly larger decision making costs in the sense that first round proposals more often fail, leading to more costly delay. The higher rate of failure under unanimity rule and in large groups is a combination of three facts: (1) in these conditions, a larger number of individuals must agree, (2) an important fraction of individuals reject offers below the equal share, and (3) proposers demand more (relative to the equal share) in large groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cataract extraction. We developed a new appropriateness of indications tool for cataract following the RAND method. We tested the validity of our panel results. Methods: Criteria were developed using a modified Delphi panel judgment process. A panel of 12 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the influence of all variables on the final panel score using linear and logistic regression models. The explicit criteria developed were summarized by classification and regression tree analysis. Results: Of the 765 indications evaluated by the main panel in the second round, 32.9% were found appropriate, 30.1% uncertain, and 37% inappropriate. Agreement was found in 53% of the indications and disagreement in 0.9%. Seven variables were considered to create the indications and divided into three groups: simple cataract, with diabetic retinopathy, or with other ocular pathologies. The preoperative visual acuity in the cataractous eye and visual function were the variables that best explained the panel scoring. The panel results were synthesized and presented in three decision trees. Misclassification error in the decision trees, as compared with the panel original criteria, was 5.3%. Conclusion: The parameters tested showed acceptable validity for an evaluation tool. These results support the use of this indication algorithm as a screening tool for assessing the appropriateness of cataract extraction in field studies and for the development of practice guidelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo se encuentra bajo la licencia Creative Commons Attribution 3.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the performance of semi-supervised learning has been theoretically investigated. However, most of this theoretical development has focussed on binary classification problems. In this paper, we take it a step further by extending the work of Castelli and Cover [1] [2] to the multi-class paradigm. Particularly, we consider the key problem in semi-supervised learning of classifying an unseen instance x into one of K different classes, using a training dataset sampled from a mixture density distribution and composed of l labelled records and u unlabelled examples. Even under the assumption of identifiability of the mixture and having infinite unlabelled examples, labelled records are needed to determine the K decision regions. Therefore, in this paper, we first investigate the minimum number of labelled examples needed to accomplish that task. Then, we propose an optimal multi-class learning algorithm which is a generalisation of the optimal procedure proposed in the literature for binary problems. Finally, we make use of this generalisation to study the probability of error when the binary class constraint is relaxed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objeto del presente trabajo, titulado “Aplicación de redes neuronales artificiales para la caracterización del error en trayectorias circulares por WEDM”, es el estudio y posterior optimización del error en trayectorias circulares mecanizadas mediante electroerosión por hilo. Se pretende desarrollar un modelo predictivo de dicho error a través de la implementación de una Red Neuronal Artificial (RNA), que deberá ser alimentada con resultados empíricos resultantes de una batería de ensayos. El modelo desarrollado permitirá conocer a priori los errores que se producirán al cortar formas circulares en distintos espesores y con distintos radios sin necesidad de recurrir a costosas baterías de ensayos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: To ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. Copyright: © 2015 Bildosola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the basic elements for the analysis of decision under uncertainty: Expected Utility Theory and its citicisms and risk aversion and its measurement. The concepts of certainty equivalent, risk premium, absolute risk aversion and relative risk aversion, and the "more risk averse than" relation are discussed. The work is completed with several applications of decision making under uncertainty to different economic problems: investment in risky assets and portfolio selection, risk sharing, investment to reduce risk, insurance, taxes and income underreporting, deposit insurance and the value of information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]En la actualidad el proceso de mecanizado mediante electroerosión por hilo (WEDM) posee varias problemáticas a la hora de la ejecución de los cortes para producir diferentes formas, ya sean esquinas, radios de redondeo o de acuerdo y por último la realización de círculos. Es por ello por lo que se elabora el presente trabajo cuya finalidad es llegar a caracterizar los errores cometidos en el corte de desbaste de probetas con trayectorias circulares y tecnología estándar. De esta manera se podrá cuantificar las desviaciones que se producen en las piezas en función del espesor y de sus radios. Toda la información obtenida en el trabajo permitirá una futura actuación en diversos parámetros máquina, elaborando nuevas tecnologías o bien poder mitigarlos realizando correcciones geométricas, ajustando sus tolerancias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.