9 resultados para chaotic motions
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.
Resumo:
Revista con LCC: Reconocimiento – NoComercial – SinObraDerivada (by-nc-nd)
Resumo:
[ES]Por lo tanto el objetivo de este trabajo es resolver el problema de posición de un manipulador paralelo analizando los movimientos parásitos y la influencia de los mismos sobre el problema. Para ello inicialmente se realizará un modelo del manipulador en un programa de CAD. Posteriormente se resolverán las ecuaciones de posición y se implementará esta resolución en un programa de cálculo como MATLAB. Finalmente se compararán los resultados obtenidos con un manipulador de características similares pero una configuración ligeramente distinta.
Resumo:
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.
Resumo:
Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H
Resumo:
[eus] Lan hau 3 urteko umeen gelan egindako ikerketa bat da, bertan, jolas tradizionalak praktikan jarriko dira eta hauek umeen emozioetan duten eragina aztertuko da. Horretarako ikerketa hau 3 fase desberdinetan planteatu dugu: lehenengo pausua, jolas tradizionalak irudien bidez zer diren azaltzea izan da; ondoren, kontinente desberdinetako jolas tradizional batzuk burutu egin ditugu; eta, jarraian, umeak sentitu dutena marrazki batean adierazi dute. Praktikatutako jardueren barne logika aztertu dugu, espazio, denbora, harremanak eta objektuak eta umeek marraztutako marrazkiekin erlazionatu ditugu.
Resumo:
In the present work, the nematic glassy state of the non-symmetric LC dimer -(4-cyanobiphenyl-4-yloxy)--(1-pyrenimine-benzylidene-4-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of -alumina nanoparticles, in several concentrations.
Resumo:
[EN] In the recent years a series of optical correlation techniques have been developed in order to be able to measure flow velocity with high spatial resolution while being non-invasive in order to be employed in-vivo on biological organisms. The technique employed in my thesis work, scanning laser image correlation (SLIC), is a powerful approach for the detection of flow motions because it overcomes some limitations of the classical spectroscopy techniques. SLIC method consists in repeated laser scans over a linear pattern and on the cross correlation of the signal emitted by the excited fluorophores in different positions along the scan line. Therefore, the resulting measurements for flow velocity are really accurate.
Resumo:
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.