8 resultados para blood-aqueous barrier

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microglia are largely known as the major orchestrators of the brain inflammatory response. As such, they have been traditionally studied in various contexts of disease, where their activation has been assumed to induce a wide range of detrimental effects. In the last few years, a series of discoveries have challenged the current view of microglia, showing their active and positive contribution to normal brain function. This Research Topic will review the novel physiological roles of microglia in the developing, mature and aging brain, under non-pathological conditions. In particular, this Research Topic will discuss the cellular and molecular mechanisms by which microglia contribute to the formation, pruning and plasticity of synapses; the maintenance of the blood brain barrier; the regulation of adult neurogenesis and hippocampal learning; and neuronal survival, among other important roles. Because these novel findings defy our understanding of microglial function in health as much as in disease, this Research Topic will also summarize the current view of microglial nomenclature, phenotypes, origin and differentiation, sex differences, and contribution to various brain pathologies. Additionally, novel imaging approaches and molecular tools to study microglia in their non-activated state will be discussed. In conclusion, this Research Topic seeks to emphasize how the current research in neuroscience is challenged by never-resting microglia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: FTY720 (fingolimod, Gilenya(TM)), a structural analog of sphingosine-1-phosphate (S1P), is the first oral drug approved for treatment the relapsing-remitting form of multiple sclerosis (MS), and its efficacy has been related to induced lymphopenia and consequent immunosuppression via modulation of S1P(1) receptors (S1P(1)R). However, due to its lipophilic nature, FTY720 crosses the blood brain barrier (BBB) and could act directly on neural cells. In this study, we investigated the effectiveness of FTY720 as a neuroprotective agent using in vitro and in vivo models of excitotoxic neuronal death and examined if FTY720 exerts a direct action on neurons, or/and an indirect modulation of inflammation-mediated neurodegeneration as a possible mechanism of neuroprotection. Methods: Primary neuronal and organotypic cortical cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excitotoxic cell death (measured by lactate dehydrogenase (LDH) assay or propidium iodide uptake, respectively). The effects of FTY720 treatment (10, 100 and 1,000 nM) on neuronal survival were examined. As an in vivo model of neuronal death and inflammation, we used intracerebroventricular (icv) administration of kainic acid (KA; 0.5 mu g/2 mu l) in Sprague-Dawley rats. FTY720 was applied icv (1 mu g/2 mu l), together with KA, plus intraperitoneally (ip; 1 mg/kg) 24 h before, and daily, until sacrifice 3 days after icv. Rats were evaluated for neurological score, neuronal loss in CA3 hippocampal region and activation of microglia at the lesion site. In addition, we tested FTY720 as a modulator of microglia responses using microglial cell cultures activated with lipopolysaccharide (LPS) and its effects in stress signalling pathways using western blotting for p38 and JNK1/2 mitogen-activated protein kinases (MAPKs). Results: FTY720 was able to reduce excitotoxic neuronal death in vitro. Moreover, in vivo repeated FTY720 administration attenuated KA-induced neurodegeneration and microgliosis at the CA3 lesion site. Furthermore, FTY720 negatively modulates p38 MAPK in LPS-activated microglia, whereas it had no effect on JNK1/2 activation. Conclusions: These data support a role for FTY720 as a neuroprotective agent against excitotoxin-induced neuronal death and as a negative modulator of neuroinflammation by targeting the p38 MAPK stress signalling pathway in microglia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: 5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods: Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results: MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A(2A) adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion: MTA may potentially offer therapeutic neuroprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings: We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 uC; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results: Marathoners reduced their running pace from 3.5 6 0.4 m/s after 5-km to 2.9 6 0.6 m/s at the end of the race (P,0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (. 15% pace reduction) had elevated post-race myoglobin (1318 6 1411 v 623 6 391 mg L21; P,0.05), lactate dehydrogenase (687 6 151 v 583 6 117 U L21; P,0.05), and creatine kinase (564 6 469 v 363 6 158 U L21; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (23.1 6 1.0 v 23.0 6 1.0%; P = 0.60) or post-race body temperature (38.7 6 0.7 v 38.9 6 0.9 uC; P = 0.35). Conclusions/Significance: Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The aims of this work were (i) to evaluate the potential of nanostructured lipid carriers (NLCs) as a tool to 24 enhance the oral bioavailability of poorly soluble compounds using saquinavir (SQV), a BCS class IV drug 25 and P-gp substrate as a model drug, and (ii) to study NLC transport mechanisms across the intestinal barrier. 26 Three different NLC formulations were evaluated. SQV transport across Caco-2 monolayers was enhanced up 27 to 3.5-fold by NLCs compared to SQV suspension. M cells did not enhance the transport of NLCs loaded with 28 SQV. The size and amount of surfactant in the NLCs influenced SQV's permeability, the transcytosis pathway 29 and the efflux of SQV by P-gp. An NLC of size 247 nm and 1.5% (w/v) surfactant content circumvented P-gp 30 efflux and used both caveolae- and clathrin-mediated transcytosis, in contrast to the other NLC formulations, 31 which used only caveolae-mediated transcytosis. By modifying critical physicochemical parameters of the 32 NLC formulation, we were thus able to overcome the P-gp drug efflux and alter the transcytosis mechanism 33 of the nanoparticles. These findings support the use of NLCs approaches for oral delivery of poorly 34 water-soluble P-gp substrates.