2 resultados para World-Class Service
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques-Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description-using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.
Resumo:
Emergent properties of global political culture were examined using data from the World History Survey (WHS) involving 6,902 university students in 37 countries evaluating 40 figures from world history. Multidimensional scaling and factor analysis techniques found only limited forms of universality in evaluations across Western, Catholic/Orthodox, Muslim, and Asian country clusters. The highest consensus across cultures involved scientific innovators, with Einstein having the most positive evaluation overall. Peaceful humanitarians like Mother Theresa and Gandhi followed. There was much less cross-cultural consistency in the evaluation of negative figures, led by Hitler, Osama bin Laden, and Saddam Hussein. After more traditional empirical methods (e.g., factor analysis) failed to identify meaningful cross-cultural patterns, Latent Profile Analysis (LPA) was used to identify four global representational profiles: Secular and Religious Idealists were overwhelmingly prevalent in Christian countries, and Political Realists were common in Muslim and Asian countries. We discuss possible consequences and interpretations of these different representational profiles.