6 resultados para WAKE FLOW CONTROL

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen Background: Nitric oxide can be measured at multiple flow rates to determine proximal (maximum airway nitric oxide flux; Jaw(NO)) and distal inflammation (alveolar nitric oxide concentration; CA(NO)). The main aim was to study the association among symptoms, lung function, proximal (maximum airway nitric oxide flux) and distal (alveolar nitric oxide concentration) airway inflammation in asthmatic children treated and not treated with inhaled glucocorticoids. Methods: A cross-sectional study with prospective data collection was carried out in a consecutive sample of girls and boys aged between 6 and 16 years with a medical diagnosis of asthma. Maximum airway nitric oxide flux and alveolar nitric oxide concentration were calculated according to the two-compartment model. In asthmatic patients, the asthma control questionnaire (CAN) was completed and forced spirometry was performed. In controls, differences between the sexes in alveolar nitric oxide concentration and maximum airway nitric oxide flux and their correlation with height were studied. The correlation among the fraction of exhaled NO at 50 ml/s (FENO50), CA(NO), Jaw(NO), forced expiratory volume in 1 second (FEV1) and the CAN questionnaire was measured and the degree of agreement regarding asthma control assessment was studied using Cohen's kappa. Results: We studied 162 children; 49 healthy (group 1), 23 asthmatic participants without treatment (group 2) and 80 asthmatic patients treated with inhaled corticosteroids (group 3). CA(NO) (ppb) was 2.2 (0.1-4.5), 3 (0.2-9.2) and 2.45 (0.1-24), respectively. Jaw(NO) (pl/s) was 516 (98.3-1470), 2356.67 (120-6110) and 1426 (156-11805), respectively. There was a strong association (r = 0.97) between FENO50 and Jaw(NO) and the degree of agreement was very good in group 2 and was good in group 3. There was no agreement or only slight agreement between the measures used to monitor asthma control (FEV1, CAN questionnaire, CA(NO) and Jaw(NO)). Conclusions: The results for CA(NO) and Jaw(NO) in controls were similar to those found in other reports. There was no agreement or only slight agreement among the three measure instruments analyzed to assess asthma control. In our sample, no additional information was provided by CA(NO) and Jaw(NO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices ( µPADs) is presented by introducing ionogel materials as passive pumps. µPADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the µPADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flow and mixing behaviour of two different ionogels µPADs were compared with the non-treated µPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the railway sector depends, to a great extent, on the deployment of advanced railway signalling systems. These signalling systems are based on communication architectures that must cope with complex electromagnetical environments. This paper is outlined in the context of developing the necessary tools to allow the quick deployment of these signalling systems by contributing to an easier analysis of their behaviour under the effect of electromagnetical interferences. Specifically, this paper presents the modelling of the Eurobalise-train communication flow in a general purpose simulation tool. It is critical to guarantee this communication link since any lack of communication may lead to a stop of the train and availability problems. In order to model precisely this communication link we used real measurements done in a laboratory equipped with elements defined in the suitable subsets. Through the simulation study carried out, we obtained performance indicators of the physical layer such as the received power, SNR and BER. The modelling presented in this paper is a required step to be able to provide quality of service indicators related to perturbed scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices (m-PADs) is presented by introducing ionogel materials as passive pumps. m-PADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the m-PADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flowand mixing behaviour of two different ionogels mPADs were compared with the non-treated mPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.