7 resultados para Transformadas de Wavelet

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper Leong-Huang:2010 {Journal of Applied Statistics 37, 215–233} proposed a wavelet-correlation-based approach to test for cointegration between two time series. However, correlation and cointegration are two different concepts even when wavelet analysis is used. It is known that statistics based on nonstationary integrated variables have non-standard asymptotic distributions. However, wavelet analysis offsets the integrating order of nonstationary series so that traditional asymptotics on stationary variables suffices to ascertain the statistical properties of wavelet-based statistics. Based on this, this note shows that wavelet correlations cannot be used as a test of cointegration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conceptos fundamentales. - Ecuaciones de primer orden. - Ecuaciones de orden superior. - Sistemas de ecuaciones. - Transformación de Laplace. - Solución para series de ecuaciones lineales. - Métodos aproximados. - Teoría de la estabilidad. - Problemas de contorno de Sturm-Liouville. - Apéndice: Teoremas fundamentales. Métodos simbólicos. Resumen de métodos analíticos exactos. Definición y propiedades de algunas funciones. Tablas de transformadas de Laplace. Tablas de transformadas de Fourier. Soluciones y sugerencias para algunos ejercicios.