8 resultados para Tissue Inhibitor

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Rumenic acid (cis9,trans11-18:2) is the main natural isomer of conjugated linoleic acid (CLA). Rumenic acid has many purported health benefits, but effects of most other CLA isomers are unknown. Typically trans7,cis9-18:2 is the second most abundant CLA isomer, but it co-elutes with rumenic acid on conventional polar gas chromatography (GC) columns, requiring complimentary analysis with silver-ion high performance liquid chromatography (Ag(+)-HPLC). Herein we report a rapid method for analyzing rumenic acid and trans7,cis9-18:2 using a 30 m ionic-liquid GC column. Optimal resolution of the two CLA isomers was at 145 degrees C and analysis of backfat from barley-fed cattle compared well with GC/Ag(+)-HPLC (y =0.978x - 0.031, r =0.985, P <0.001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A remarkable range of biological functions have been ascribed to resveratrol. Recently, this polyphenol has been shown to have body fat lowering effects. The aim of the present study was to assess some of the potential underlying mechanisms of action which take place in adipose tissue. Methods: Sixteen male Sprague-Dawley rats were randomly divided into two groups: control and treated with 30 mg resveratrol/kg body weight/d. All rats were fed an obesogenic diet and after six weeks of treatment white adipose tissues were dissected. Lipoprotein lipase activity was assessed by fluorimetry, acetyl-CoA carboxylase by radiometry, and malic enzyme, glucose-6P-dehydrogenase and fatty acid synthase by spectrophotometry. Gene expression levels of acetyl-CoA carboxylase, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase, adipose triglyceride lipase, PPAR-gamma, SREBP-1c and perilipin were assessed by Real time RT-PCR. The amount of resveratrol metabolites in adipose tissue was measured by chromatography. Results: There was no difference in the final body weight of the rats; however, adipose tissues were significantly decreased in the resveratrol-treated group. Resveratrol reduced the activity of lipogenic enzymes, as well as that of heparin-releasable lipoprotein lipase. Moreover, a significant reduction was induced by this polyphenol in hormone-sensitive lipase mRNA levels. No significant changes were observed in other genes. Total amount of resveratrol metabolites in adipose tissue was 2.66 +/- 0.55 nmol/g tissue. Conclusions: It can be proposed that the body fat-lowering effect of resveratrol is mediated, at least in part, by a reduction in fatty acid uptake from circulating triacylglycerols and also in de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a GSK 2(nd) generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 mu M) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+](i)) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca-2](i) concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+](i) increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

103 p.; 102 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-beta 3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.