3 resultados para Stress.
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010
Resumo:
Background: Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat- shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results: We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5'-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real- time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress- inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion: Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.
Resumo:
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 mu s/MPa, respectively.