5 resultados para Span
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
This paper models the mean and volatility spillovers of prices within the integrated Iberian and the interconnected Spanish and French electricity markets. Using the constant (CCC) and dynamic conditional correlation (DCC) bivariate models with three different specifications of the univariate variance processes, we study the extent to which increasing interconnection and harmonization in regulation have favoured price convergence. The data consist of daily prices calculated as the arithmetic mean of the hourly prices over a span from July 1st 2007 until February 29th 2012. The DCC model in which the variances of the univariate processes are specified with a VARMA(1,1) fits the data best for the integrated MIBEL whereas a CCC model with a GARCH(1,1) specification for the univariate variance processes is selected to model the price series in Spain and France. Results show that there are significant mean and volatility spillovers in the MIBEL, indicating strong interdependence between the two markets, while there is a weaker evidence of integration between the Spanish and French markets. We provide new evidence that the EU target of achieving a single electricity market largely depends on increasing trade between countries and homogeneous rules of market functioning.
Resumo:
25 p.
Resumo:
[ES] El trabajo realiza una aproximación a la situación actual de los estudios de ADN antiguo humano en Europa, recopilando los datos de los individuos analizados hasta 2013 (n=700), a modo de síntesis interpretativa continental y regional de los territorios para los cuales se han obtenido resultados significativos (Centroeuropa, Cornisa Cantábrica, Mediterráneo occidental, Escandinavia-Báltico-Rusia y Alpes orientales). Las hipótesis se expresan en términos de continuidad o discontinuidad genética entre los grupos humanos habitantes de un territorio, centradas en la problemática de la neolitización, en una horquilla cronocultural del Paleolítico superior a la Edad del Bronce. Los resultados se resumen en (1) una preponderancia del clado mitocondrial U para muestras preneolíticas; (2) la posibilidad de una intrusión démica en una fase inicial de la neolitización centroeuropea -tipo N1a, con pérdida posterior de ese haplogrupo mitocondrial-; (3) la evidencia del proceso neolitizador como heterogéneo y con diferente impacto a escala regional; (4) una estabilización del acervo genético europeo actual como resultado de eventos postneolíticos; y (5) las posibilidades analíticas de la genética aplicada a las poblaciones antiguas como un instrumento de gran interés, observándose la necesidad de realizar más analíticas con recorrido diacrónico.
Resumo:
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.
Resumo:
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.