2 resultados para Sociology of Learning

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a time when Technology Supported Learning Systems are being widely used, there is a lack of tools that allows their development in an automatic or semi-automatic way. Technology Supported Learning Systems require an appropriate Domain Module, ie. the pedagogical representation of the domain to be mastered, in order to be effective. However, content authoring is a time and effort consuming task, therefore, efforts in automatising the Domain Module acquisition are necessary.Traditionally, textbooks have been used as the main mechanism to maintain and transmit the knowledge of a certain subject or domain. Textbooks have been authored by domain experts who have organised the contents in a means that facilitate understanding and learning, considering pedagogical issues.Given that textbooks are appropriate sources of information, they can be used to facilitate the development of the Domain Module allowing the identification of the topics to be mastered and the pedagogical relationships among them, as well as the extraction of Learning Objects, ie. meaningful fragments of the textbook with educational purpose.Consequently, in this work DOM-Sortze, a framework for the semi-automatic construction of Domain Modules from electronic textbooks, has been developed. DOM-Sortze uses NLP techniques, heuristic reasoning and ontologies to fulfill its work. DOM-Sortze has been designed and developed with the aim of automatising the development of the Domain Module, regardless of the subject, promoting the knowledge reuse and facilitating the collaboration of the users during the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.