7 resultados para Social workers--Self-rating of.
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
19 p.
Resumo:
We present the results of the microstratigraphic, phytolith and wood charcoal study of the remains of a 10.5 ka roof. The roof is part of a building excavated at Tell Qarassa (South Syria), assigned to the Pre-Pottery Neolithic B period (PPNB). The Pre-Pottery Neolithic (PPN) period in the Levant coincides with the emergence of farming. This fundamental change in subsistence strategy implied the shift from mobile to settled aggregated life, and from tents and huts to hard buildings. As settled life spread across the Levant, a generalised transition from round to square buildings occurred, that is a trademark of the PPNB period. The study of these buildings is fundamental for the understanding of the ever-stronger reciprocal socio-ecological relationship humans developed with the local environment since the introduction of sedentism and domestication. Descriptions of buildings in PPN archaeological contexts are usually restricted to the macroscopic observation of wooden elements (posts and beams) and mineral components (daub, plaster and stone elements). Reconstructions of microscopic and organic components are frequently based on ethnographic analogy. The direct study of macroscopic and microscopic, organic and mineral, building components performed at Tell Qarassa provides new insights on building conception, maintenance, use and destruction. These elements reflect new emerging paradigms in the relationship between Neolithic societies and the environment. A square building was possibly covered here with a radial roof, providing a glance into a topologic shift in the conception and understanding of volumes, from round-based to square-based geometries. Macroscopic and microscopic roof components indicate buildings were conceived for year-round residence rather than seasonal mobility. This implied performing maintenance and restoration of partially damaged buildings, as well as their adaptation to seasonal variability
Resumo:
The self-assembly properties of a series of functionalized regioregular oligo(3-alkylthiophenes) were investigated by using scanning tunneling microscopy (STM) at the liquid-solid interface under ambient conditions. The characteristics of the 2-D crystals formed on the (0001) plane of highly ordered pyrolitic graphite (HOPG) strongly depend on the length of the p-conjugated oligomer backbone, on the functional groups attached to it, and on the alkyl substitution pattern on the individual thiophene units. Theoretical calculations were performed to analyze the geometry and electronic density of the molecular orbitals as well as to analyze the intermolecular interactions, in order to obtain models of the 2-D molecular ordering on the substrate.
Resumo:
Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.
Resumo:
Póster presentado en: XXII International Congress and General Assembly of the International Union of Crystallography (UICr), 22–30 Agosto 2011. Madrid, España
Resumo:
Póster presentado en: 11th International Symposium on Applied Bioinorganic Chemistry. 2-5 Diciembre 2011. Barcelona, España (ISABC 2011)
Resumo:
Artículo Polyhedron 2011