3 resultados para Silver Nanorods
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
The synthesis of a GSK 2(nd) generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.
Resumo:
The presence of giant diamagnetism in Au nanorods, NRs, is shown to be a possible consequence of field induced currents in the surface electrons. The distance, Delta , between quantum surface energy levels has been calculated as a function of the NRs radius. Note that those electrons occupying states for which Delta > k(B)T are steadily orbiting with constant orbital moment. The diamagnetic response induced when a field is turned on remains constant during the time the field is acting. As the NRs radius increases, Delta decreases and accordingly the electron fraction available to generate constant currents decreases, consequently the surface diamagnetic susceptibility decreases towards its bulk value. The surface electronic motion induced by the axial applied field on electrons confined into a cylindrical surface accounts with extremely good quantitative agreement for the giant diamagnetism recently measured and reported.
Resumo:
In this work a chain of 4000 silver nanoparticles embedded in a glass medium is considered, and its leftmost particle is excited by an electric field pulse of Gaussian shape. Considering Drude’s model, losses of the system are taken into account by γ factor, which stands for the Ohmic losses, and different quantities, such as frequencies of excited modes and group velocities are calculated. Besides, these results are compared to those obtained from the dispersion relation of an infinite chain. The increase of losses affects the lifetime and propagation length of the plasmon; besides, although the response dispersion relation for an infinite chain seems to remain invariable, this is not the case for a finite chain. The mismatches are bigger for higher losses. Furthermore, plasmon propagation velocities are analysed, and an explanation for the mismatch of longitudinal modes close to the intersection point with the dispersion of light is suggested. Finally, some concepts to treat this problem from the energy transport point of view are introduced.