6 resultados para Reticulum endoplasmique

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat- shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results: We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5'-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real- time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress- inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion: Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background -- N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model. Methods -- CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling. Results -- No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells. Conclusions -- In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable plaques) and asymptomatic patients (stable plaques). Methods: 80 carotid plaques obtained by carotid endarterectomy and classified as symptomatic (>70% stenosis) or asymptomatic (>80% stenosis) were used in this study. The expression levels of 59 genes were quantified by qPCR on RNA extracted from the carotid plaques obtained by endarterectomy and analyzed by means of various bioinformatic tools. Results: Several genes associated with autophagy pathways displayed differential expression levels between asymptomatic and symptomatic (i.e. MAP1LC3B, RAB24, EVA1A). In particular, mRNA levels of MAP1LC3B, an autophagic marker, showed a 5-fold decrease in symptomatic samples, which was confirmed in protein blots. Immune system-related factors and endoplasmic reticulum-associated markers (i.e. ERP27, ITPR1, ERO1LB, TIMP1, IL12B) emerged as differently expressed genes between asymptomatic and symptomatic patients. Conclusions: Carotid atherosclerotic plaques in which MAP1LC3B is underexpressed would not be able to benefit from MAP1LC3B-associated autophagy. This may lead to accumulation of dead cells at lesion site with subsequent plaque destabilization leading to cerebrovascular events. Identified biomarkers and network interactions may represent novel targets for development of treatments against plaque destabilization and thus for the prevention of cerebrovascular events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using N-15-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BCL-2 family proteins are key regulators of the mitochondrial apoptotic machinery, controlling the mitochondrial outer membrane (MOM) permeabilization (MOMP). BCL-2 related Ovarian Killer (BOK) is a poorly understood pro-apoptotic member of this protein family. It has been reported that BOK localizes predominantly (although not exclusively) at membranes of the endoplasmic reticulum and of the Golgi apparatus. However, it is unclear whether BOK also operates at the MOM to promote apoptosis, as other pro-apoptotic BCL-2 family members do. Basing on the fact that the other two BAX-like pro-apoptotic members have been reported to oligomerize in order to induce MOMP, site-directed mutagenesis was used to generate two point mutations that predictably eliminated BOK’s oligomerization capacity. Then, the effect of such mutations on BOK’s membrane activity was examined using fluorescence spectroscopy.