7 resultados para Resource Loss
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
[EN] This research provides a useful framework for identifying a small firms’ propensity to engage in entrepreneurial orientation. We examine the impact of the Entrepreneurial Orientation (EO) as a main resource and capability on small firm’ growth. The growth seems to come out as an important demonstration of the entrepreneurial orientation of small firms (Davidsson, 1989; Green and Brown, 1997; Janney and Gregory, 2006). Thus, this research builds on prior conceptual research that suggests a positive integration between entrepreneurial orientation and resource-based view. In the first instance, the research will focus on reviewing literature in the emerging area of entrepreneurial orientation as it applies to growth oriented small firms and resource-based view of the firm. Secondly, an empirical study was developed based on a stratified sample of small firms of manufacturing industry. Data were submitted to a multivariate statistical analysis and a linear regression model was performed in order to predict the influence of the resources and capabilities on small firms’ growth. In this sense, we consider the construct growth as a dependent variable and the ones relates with resources and capabilities (entrepreneur resources, firm resources, networks and EO) as independent variables. The research results suggest a set of resources and capabilities that promote the growth of the small firms. Also, the EO seems to have a predictive value on growth. Explaining variables related with resources and capabilities and EO were identified as essential in growth oriented small firms. It was still possible to conclude that the entrepreneurial firms which grew seem to have resources and develop more capabilities and take advantage in the search for those competences. This attitude reflects on the EO of the firm. This study has important implication for both researchers and practitioners. It highlights the necessity of firms to develop superior EO of all their members and also to invest on better resources and consequently superior capabilities as a way of reaching higher levels of growth. While previous authors have attempted to analyse certain aspects of this process (linkage between entrepreneurial orientation and growth), this research developed a framework that combines these and others factors (resource-based view) pertinent to growth oriented small firms. The results support the necessity to identify explicative variables of multiple levels to explain the growth of small firms. The adoption of an entrepreneurial orientation as an indispensable variable to the growth oriented small firms seems pertinent.
Resumo:
6 p.
Resumo:
INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
There is an increasing number of Ambient Intelligence (AmI) systems that are time-sensitive and resource-aware. From healthcare to building and even home/office automation, it is now common to find systems combining interactive and sensing multimedia traffic with relatively simple sensors and actuators (door locks, presence detectors, RFIDs, HVAC, information panels, etc.). Many of these are today known as Cyber-Physical Systems (CPS). Quite frequently, these systems must be capable of (1) prioritizing different traffic flows (process data, alarms, non-critical data, etc.), (2) synchronizing actions in several distributed devices and, to certain degree, (3) easing resource management (e.g., detecting faulty nodes, managing battery levels, handling overloads, etc.). This work presents FTT-MA, a high-level middleware architecture aimed at easing the design, deployment and operation of such AmI systems. FTT-MA ensures that both functional and non-functional aspects of the applications are met even during reconfiguration stages. The paper also proposes a methodology, together with a design tool, to create this kind of systems. Finally, a sample case study is presented that illustrates the use of the middleware and the methodology proposed in the paper.
Resumo:
28 p.
Resumo:
A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G= 2p/ a between the ion parallel momentum and the surface periodic potential of period a. Diffraction- assisted capture becomes possible for glancing angles F smaller than a critical value given by Fc 2- 2./ a-| Vim|/ E, where E is the kinetic energy of the ion,. = h/ Mv its de Broglie wavelength and Vim its average electronic image potential at the distance from the surface where diffraction takes place. For F< Fc, the ion can fall into a selected capture state in the quasi- continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta h. of Fuchs- Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.