7 resultados para Relativity (Physics)

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

30.00% 30.00%

Publicador:

Resumo:

IARD 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields - Galileo Galilei Inst Theoret Phys (GGI), Florence, ITALY - MAY 29-JUN 01, 2012. Edited by:Horowitz, LP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spanish Relativity Meeting (ERE 2014) Valencia, SPAIN, SEP 01-05, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F (R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this dissertation is to introduce Bessel functions to the reader, as well as studying some of their properties. Moreover, the final goal of this document is to present the most well- known applications of Bessel functions in physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hartle's model provides the most widely used analytic framework to describe isolated compact bodies rotating slowly in equilibrium up to second order in perturbations in the context of General Relativity. Apart from some explicit assumptions, there are some implicit, like the "continuity" of the functions in the perturbed metric across the surface of the body. In this work we sketch the basics for the analysis of the second order problem using the modern theory of perturbed matchings. In particular, the result we present is that when the energy density of the fluid in the static configuration does not vanish at the boundary, one of the functions of the second order perturbation in the setting of the original work by Hartle is not continuous. This discrepancy affects the calculation of the change in mass of the rotating star with respect to the static configuration needed to keep the central energy density unchanged.